Skip to main content

Drying of Salvia officinalis L. by hot air and microwaves: dynamic desorption isotherms, drying kinetics and biochemical quality

Abstract

Salvia officinalis is an important source of antioxidants. However, few studies have carried out its postharvest treatments. Drying and antioxidants extraction form Salvia officinalis were carried out and dynamic vapor sorption technique was applied for the first time for desorption isotherms determination. Two drying processes were investigated and compared. Hot air convective drying at four temperatures (50, 60, 70 and 80 °C) and three air velocities (0.5, 1 and 1.42 m/s) and microwave drying at four output powers (18, 368, 518 and 618 W) were used for S. officinalis drying and also for analysis of their impact on polyphenols, flavonoids and antioxidant capacity. Drying kinetics were established and modeled by Page equation. Better kinetics and superior product quality were obtained by microwaves compared to hot air convective drying. Effective diffusivities were calculated and were different depending on the process. They ranged between 1.7.10−10 and 8.37.10−10 m2/s for microwaves and from 2915.10−12 and 2964.10−11 m2/s for hot air. Energy activation was 1054.85 J/mol for hot air and 4.85 W/g for microwave.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

A:

Isotherm model parameter

a:

Kinetic model parameter

AC:

Antioxidant capacity

aw :

Water activity (-)

B:

Isotherm model parameter

b:

Kinetic model parameter

C:

Isotherm model parameter

D0 :

Arrhenius factor

De :

Effective diffusivity (m2/s)

DR:

Drying rate (s-1)

Ea :

Activation energy (J/mol or W/g)

K:

Isotherm model parameter

k:

Kinetic model parameter

K1 :

Isotherm model parameter

k1 :

Kinetic model parameter

K2 :

Isotherm model parameter

k2 :

Kinetic model parameter

L:

Half thickness of the leaves (m)

m:

Mass (kg)

MR:

Dimensionless moisture content ratio

N:

Number of observations

n:

Kinetic model parameter

n1 :

Isotherm model parameter

n2 :

Isotherm model parameter

P:

Output power (W)

R:

Universal gas constant (8.314 J/mol K)

RH:

Relative humidity (%)

R2 :

Correlation Coefficient

SSE:

Sum of squares due to error

SSR:

Sum of squares due to regression

SST:

Total sum of squares

T:

Temperature (K or °C)

t:

Time (s)

TFC:

Total flavonoids content

TPC:

Total polyphenols content

v:

Air velocity (m/s)

X:

Moisture content (kg water/kg dm)

Xm :

Isotherm model parameter

y i :

Response value

\( {\widehat{y}}_i \) :

Predicted response value

\( {\overline{y}}_i \) :

Mean response value

0:

Initial

dm:

Dry matter

eq:

Equilibrium

References

  1. Bockhoff RC, Wester P, Tweraser E (2003) The Staminal Lever Mechanism in Salvia L. ( Lamiaceae )-a Review. Plant Biol 5:33–41

    Article  Google Scholar 

  2. Parsai A, Eidi M, Noorbakhsh F, Sadeghipour A (2015) Antiaflatoxigenic Effect of Salvia officinalis L. Extract on Liver Damage in Adult Male Rats. Advances in Bioresearch 6:123–127

    Google Scholar 

  3. Ghorbani A, Esmaeilizadeh M (2017) Pharmacological properties of Salvia officinalis and its components. Journal of Traditional and Complementary Medicine:1–8. https://doi.org/10.1016/j.jtcme.2016.12.014

  4. Zeković Z, Pintać D, Majkić T et al (2017) Utilization of sage by-products as raw material for antioxidants recovery—Ultrasound versus microwave-assisted extraction. Ind Crop Prod 99:49–59. https://doi.org/10.1016/j.indcrop.2017.01.028

    Article  Google Scholar 

  5. Jiang Y, Zhang L, Rupasinghe HPV (2017) Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomed Pharmacother 85:57–67. https://doi.org/10.1016/j.biopha.2016.11.113

    Article  Google Scholar 

  6. Ben KMR, Ben KS, Chaieb I et al (2017) Chemical composition and biological activities of Salvia officinalis oil from Tunisia. EXCLI J 16:160–173

    Google Scholar 

  7. Rajbhar K, Dawda H, Mukundan U (2015) Polyphenols : Methods of Extraction. Scientific reviews and chemical communications 5:1–6

    Google Scholar 

  8. Hamrouni-Sellami I, Rahali FZ, Rebey IB et al (2013) Total Phenolics, Flavonoids, and Antioxidant Activity of Sage (Salvia officinalis L.) Plants as Affected by Different Drying Methods. Food Bioprocess Technol 6:806–817. https://doi.org/10.1007/s11947-012-0877-7

    Article  Google Scholar 

  9. Demiray E, Seker A, Tulek Y (2017) Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat Mass Transf 53:1817–1827. https://doi.org/10.1007/S00231-016-1943-X

    Article  Google Scholar 

  10. Jiang J, Dang L, Yuensin C et al (2017) Simulation of Microwave Thin Layer Drying Process by a New Theoretical Model. Chem Eng Sci 162:69–76. https://doi.org/10.1016/j.ces.2016.12.040

    Article  Google Scholar 

  11. Contreras C, Martín-Esparza ME, Chiralt A, Martínez-Navarrete N (2008) Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. J Food Eng 88:55–64. https://doi.org/10.1016/j.jfoodeng.2008.01.014

    Article  Google Scholar 

  12. Chen XD, Mujumdar AS (2008) Drying Technologies in Food Processing

  13. Argyropoulos D, Alex R, Kohler R, Müller J (2012) Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption. LWT Food Sci Technol 47:324–331. https://doi.org/10.1016/j.lwt.2012.01.026

    Article  Google Scholar 

  14. Penner EA, Schmidt SJ (2013) Comparison between moisture sorption isotherms obtained using the new Vapor Sorption Analyzer and those obtained using the standard saturated salt slurry method. Journal of Food Measurement and Characterization 7:185–193. https://doi.org/10.1007/s11694-013-9154-3

    Article  Google Scholar 

  15. Levoguer CL, Daryl RW (1997) Moisture sorption properties of foods products and packaging materials studied by dynamic vapor sorption. Food Technology Europe 6:28–30

    Google Scholar 

  16. Desmorieux H, Decaen N (2005) Convective drying of Spirulina in thin layer. J Food Eng 66:497–503. https://doi.org/10.1016/j.jfoodeng.2004.04.021

    Article  Google Scholar 

  17. Hill Callum AS, Norton AJ, Gary N (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514

    Article  Google Scholar 

  18. Fikry M, Al-awaadh AM (2016) Characteristics of Dynamics Sorption Isotherms of Date Flesh Powder Rich in Fiber. Int J Food Eng 12:469–480. https://doi.org/10.1515/ijfe-2015-0223

    Article  Google Scholar 

  19. Mathworks (2016) Matlab user’s guide (R2016a)

  20. Crank J (1975) The mathematics of diffusion. Oxford

  21. Ghnimi T, Hassini L, Bagane M (2016) Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves. Heat Mass Transf 52:2649–2659. https://doi.org/10.1007/s00231-016-1770-0

    Article  Google Scholar 

  22. Soysal Y, Oztekin S, Eren O (2006) Microwave Drying of Parsley : Modelling , Kinetics , and Energy Aspects. Biosyst Eng 93:403–413. https://doi.org/10.1016/j.biosystemseng.2006.01.017

    Article  Google Scholar 

  23. Said LB, Najjaa H, Neffati M, Bellagha S (2013) Color, phenolic and antioxidant characteristic changes of Allium roseum leaves during drying. J Food Qual 36:403–410

    Article  Google Scholar 

  24. Roby MHH, Sarhan MA, Selim KAH, Khalel KI (2013) Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crop Prod 43:827–831. https://doi.org/10.1016/j.indcrop.2012.08.029

    Article  Google Scholar 

  25. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitationof antioxidant capacity through the formation of a phosphomolybdinum complex: specific application to the determination of Vitamin E. Anal ytical Biochemistry 269:337–341

    Article  Google Scholar 

  26. Kouhila M, Kechaou N, Otmani M et al (2002) Experimental study of sorption isotherms and drying kinetics of moroccan Eucalyptus globulus. Dry Technol 20:2027–2039. https://doi.org/10.1081/DRT-120015582

    Article  Google Scholar 

  27. Bahloul N, Boudhrioua N, Kechaou N (2008) Moisture desorption-adsorption isotherms and isosteric heats of sorption of Tunisian olive leaves (Olea europaea L.). Ind Crop Prod 28:162–176. https://doi.org/10.1016/j.indcrop.2008.02.003

    Article  Google Scholar 

  28. Aghfir M., Kouhila M., Jamali A., et al (2005) Isothermes d’adsorption-desorption des feuilles de romarin (Rosmarinus officinalis). In: 12èmes Journées Internationales de Thermique. Maroc, pp 215–218

  29. Mohamed LA, Kouhila M, Jamali A et al (2005) Moisture sorption isotherms and heat of sorption of bitter orange leaves (Citrus aurantium). J Food Eng 67:491–498. https://doi.org/10.1016/j.jfoodeng.2004.05.016

    Article  Google Scholar 

  30. Lamharrar A, Idlimam A, Ethmane Kane CS et al (2007) Sorption isotherms and drying characterisics of Artemisia arborescens Leaves. J Agron 6:488–498

    Article  Google Scholar 

  31. Heredia A, Castello ML, Andre A (2014) Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Bioscience 7:88–94. https://doi.org/10.1016/j.fbio.2014.06.002

    Article  Google Scholar 

  32. Mujumdar AS (2006) Handbook of industrial drying third edition. CRC Press, Boca Raton

    Book  Google Scholar 

  33. Kucuk H, Midilli A, Kilic A, Dincer I (2014) A Review on Thin-Layer Drying-Curve Equations. Dry Technol 32:37–41. https://doi.org/10.1080/07373937.2013.873047

    Article  Google Scholar 

  34. Benhamou A, Idlimam A, Lamharrar A et al (2008) Diffusivité hydrique et cinétique de séchage solaire en convection forcée des feuilles de marjolaine. Revue des Energies Renouvelables 11:75–85

    Google Scholar 

  35. Leila BHS, Najjaa H, Farhat A et al (2014) Thin layer convective air drying of wild edible plant ( Allium roseum ) leaves : experimental kinetics , modeling and quality. J Food Sci Technol. https://doi.org/10.1007/s13197-014-1435-2

  36. Vega-Gálvez A, Di SK, Rodríguez K et al (2009) Effect of air-drying temperature on physico-chemical properties , antioxidant capacity , colour and total phenolic content of red pepper. Food Chem 117:647–653. https://doi.org/10.1016/j.foodchem.2009.04.066

    Article  Google Scholar 

  37. Ali MA, Yusof YA, Chin NL, Ibrahim MN (2017) Processing of Moringa leaves as natural source of nutrients by optimization of drying and grinding mechanism. J Food Process Eng:1–17. https://doi.org/10.1111/jfpe.12583

  38. Alibas I, Kacar O (2016) Microwave Drying Kinetics , hypericin Content , effective Moisture Diffusivity and activation Energy of Hypericum perforatum L. Journal of Essential Oil Bearing Plants 19:454–465. https://doi.org/10.1080/0972060X.2016.1159530

    Article  Google Scholar 

  39. Pirbalouti AG, Salehi S, Craker L (2016) Effect of drying methods on qualitative and quantitative properties of essential oil from the aerial parts of coriander. Journal of Applied Research on Medicinal and Aromatic Plants 85:1–9. https://doi.org/10.1016/j.envexpbot.2012.01.010

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Tunisian Minister for Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monia Jebri.

Ethics declarations

Conflicts of interests

The authors declare that there are no conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jebri, M., Desmorieux, H., Maaloul, A. et al. Drying of Salvia officinalis L. by hot air and microwaves: dynamic desorption isotherms, drying kinetics and biochemical quality. Heat Mass Transfer 55, 1143–1153 (2019). https://doi.org/10.1007/s00231-018-2498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2498-9