Abstract
Salvia officinalis is an important source of antioxidants. However, few studies have carried out its postharvest treatments. Drying and antioxidants extraction form Salvia officinalis were carried out and dynamic vapor sorption technique was applied for the first time for desorption isotherms determination. Two drying processes were investigated and compared. Hot air convective drying at four temperatures (50, 60, 70 and 80 °C) and three air velocities (0.5, 1 and 1.42 m/s) and microwave drying at four output powers (18, 368, 518 and 618 W) were used for S. officinalis drying and also for analysis of their impact on polyphenols, flavonoids and antioxidant capacity. Drying kinetics were established and modeled by Page equation. Better kinetics and superior product quality were obtained by microwaves compared to hot air convective drying. Effective diffusivities were calculated and were different depending on the process. They ranged between 1.7.10−10 and 8.37.10−10 m2/s for microwaves and from 2915.10−12 and 2964.10−11 m2/s for hot air. Energy activation was 1054.85 J/mol for hot air and 4.85 W/g for microwave.
This is a preview of subscription content, access via your institution.








Abbreviations
- A:
-
Isotherm model parameter
- a:
-
Kinetic model parameter
- AC:
-
Antioxidant capacity
- aw :
-
Water activity (-)
- B:
-
Isotherm model parameter
- b:
-
Kinetic model parameter
- C:
-
Isotherm model parameter
- D0 :
-
Arrhenius factor
- De :
-
Effective diffusivity (m2/s)
- DR:
-
Drying rate (s-1)
- Ea :
-
Activation energy (J/mol or W/g)
- K:
-
Isotherm model parameter
- k:
-
Kinetic model parameter
- K1 :
-
Isotherm model parameter
- k1 :
-
Kinetic model parameter
- K2 :
-
Isotherm model parameter
- k2 :
-
Kinetic model parameter
- L:
-
Half thickness of the leaves (m)
- m:
-
Mass (kg)
- MR:
-
Dimensionless moisture content ratio
- N:
-
Number of observations
- n:
-
Kinetic model parameter
- n1 :
-
Isotherm model parameter
- n2 :
-
Isotherm model parameter
- P:
-
Output power (W)
- R:
-
Universal gas constant (8.314 J/mol K)
- RH:
-
Relative humidity (%)
- R2 :
-
Correlation Coefficient
- SSE:
-
Sum of squares due to error
- SSR:
-
Sum of squares due to regression
- SST:
-
Total sum of squares
- T:
-
Temperature (K or °C)
- t:
-
Time (s)
- TFC:
-
Total flavonoids content
- TPC:
-
Total polyphenols content
- v:
-
Air velocity (m/s)
- X:
-
Moisture content (kg water/kg dm)
- Xm :
-
Isotherm model parameter
- y i :
-
Response value
- \( {\widehat{y}}_i \) :
-
Predicted response value
- \( {\overline{y}}_i \) :
-
Mean response value
- 0:
-
Initial
- dm:
-
Dry matter
- eq:
-
Equilibrium
References
Bockhoff RC, Wester P, Tweraser E (2003) The Staminal Lever Mechanism in Salvia L. ( Lamiaceae )-a Review. Plant Biol 5:33–41
Parsai A, Eidi M, Noorbakhsh F, Sadeghipour A (2015) Antiaflatoxigenic Effect of Salvia officinalis L. Extract on Liver Damage in Adult Male Rats. Advances in Bioresearch 6:123–127
Ghorbani A, Esmaeilizadeh M (2017) Pharmacological properties of Salvia officinalis and its components. Journal of Traditional and Complementary Medicine:1–8. https://doi.org/10.1016/j.jtcme.2016.12.014
Zeković Z, Pintać D, Majkić T et al (2017) Utilization of sage by-products as raw material for antioxidants recovery—Ultrasound versus microwave-assisted extraction. Ind Crop Prod 99:49–59. https://doi.org/10.1016/j.indcrop.2017.01.028
Jiang Y, Zhang L, Rupasinghe HPV (2017) Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomed Pharmacother 85:57–67. https://doi.org/10.1016/j.biopha.2016.11.113
Ben KMR, Ben KS, Chaieb I et al (2017) Chemical composition and biological activities of Salvia officinalis oil from Tunisia. EXCLI J 16:160–173
Rajbhar K, Dawda H, Mukundan U (2015) Polyphenols : Methods of Extraction. Scientific reviews and chemical communications 5:1–6
Hamrouni-Sellami I, Rahali FZ, Rebey IB et al (2013) Total Phenolics, Flavonoids, and Antioxidant Activity of Sage (Salvia officinalis L.) Plants as Affected by Different Drying Methods. Food Bioprocess Technol 6:806–817. https://doi.org/10.1007/s11947-012-0877-7
Demiray E, Seker A, Tulek Y (2017) Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat Mass Transf 53:1817–1827. https://doi.org/10.1007/S00231-016-1943-X
Jiang J, Dang L, Yuensin C et al (2017) Simulation of Microwave Thin Layer Drying Process by a New Theoretical Model. Chem Eng Sci 162:69–76. https://doi.org/10.1016/j.ces.2016.12.040
Contreras C, Martín-Esparza ME, Chiralt A, Martínez-Navarrete N (2008) Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. J Food Eng 88:55–64. https://doi.org/10.1016/j.jfoodeng.2008.01.014
Chen XD, Mujumdar AS (2008) Drying Technologies in Food Processing
Argyropoulos D, Alex R, Kohler R, Müller J (2012) Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption. LWT Food Sci Technol 47:324–331. https://doi.org/10.1016/j.lwt.2012.01.026
Penner EA, Schmidt SJ (2013) Comparison between moisture sorption isotherms obtained using the new Vapor Sorption Analyzer and those obtained using the standard saturated salt slurry method. Journal of Food Measurement and Characterization 7:185–193. https://doi.org/10.1007/s11694-013-9154-3
Levoguer CL, Daryl RW (1997) Moisture sorption properties of foods products and packaging materials studied by dynamic vapor sorption. Food Technology Europe 6:28–30
Desmorieux H, Decaen N (2005) Convective drying of Spirulina in thin layer. J Food Eng 66:497–503. https://doi.org/10.1016/j.jfoodeng.2004.04.021
Hill Callum AS, Norton AJ, Gary N (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514
Fikry M, Al-awaadh AM (2016) Characteristics of Dynamics Sorption Isotherms of Date Flesh Powder Rich in Fiber. Int J Food Eng 12:469–480. https://doi.org/10.1515/ijfe-2015-0223
Mathworks (2016) Matlab user’s guide (R2016a)
Crank J (1975) The mathematics of diffusion. Oxford
Ghnimi T, Hassini L, Bagane M (2016) Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves. Heat Mass Transf 52:2649–2659. https://doi.org/10.1007/s00231-016-1770-0
Soysal Y, Oztekin S, Eren O (2006) Microwave Drying of Parsley : Modelling , Kinetics , and Energy Aspects. Biosyst Eng 93:403–413. https://doi.org/10.1016/j.biosystemseng.2006.01.017
Said LB, Najjaa H, Neffati M, Bellagha S (2013) Color, phenolic and antioxidant characteristic changes of Allium roseum leaves during drying. J Food Qual 36:403–410
Roby MHH, Sarhan MA, Selim KAH, Khalel KI (2013) Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crop Prod 43:827–831. https://doi.org/10.1016/j.indcrop.2012.08.029
Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitationof antioxidant capacity through the formation of a phosphomolybdinum complex: specific application to the determination of Vitamin E. Anal ytical Biochemistry 269:337–341
Kouhila M, Kechaou N, Otmani M et al (2002) Experimental study of sorption isotherms and drying kinetics of moroccan Eucalyptus globulus. Dry Technol 20:2027–2039. https://doi.org/10.1081/DRT-120015582
Bahloul N, Boudhrioua N, Kechaou N (2008) Moisture desorption-adsorption isotherms and isosteric heats of sorption of Tunisian olive leaves (Olea europaea L.). Ind Crop Prod 28:162–176. https://doi.org/10.1016/j.indcrop.2008.02.003
Aghfir M., Kouhila M., Jamali A., et al (2005) Isothermes d’adsorption-desorption des feuilles de romarin (Rosmarinus officinalis). In: 12èmes Journées Internationales de Thermique. Maroc, pp 215–218
Mohamed LA, Kouhila M, Jamali A et al (2005) Moisture sorption isotherms and heat of sorption of bitter orange leaves (Citrus aurantium). J Food Eng 67:491–498. https://doi.org/10.1016/j.jfoodeng.2004.05.016
Lamharrar A, Idlimam A, Ethmane Kane CS et al (2007) Sorption isotherms and drying characterisics of Artemisia arborescens Leaves. J Agron 6:488–498
Heredia A, Castello ML, Andre A (2014) Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Bioscience 7:88–94. https://doi.org/10.1016/j.fbio.2014.06.002
Mujumdar AS (2006) Handbook of industrial drying third edition. CRC Press, Boca Raton
Kucuk H, Midilli A, Kilic A, Dincer I (2014) A Review on Thin-Layer Drying-Curve Equations. Dry Technol 32:37–41. https://doi.org/10.1080/07373937.2013.873047
Benhamou A, Idlimam A, Lamharrar A et al (2008) Diffusivité hydrique et cinétique de séchage solaire en convection forcée des feuilles de marjolaine. Revue des Energies Renouvelables 11:75–85
Leila BHS, Najjaa H, Farhat A et al (2014) Thin layer convective air drying of wild edible plant ( Allium roseum ) leaves : experimental kinetics , modeling and quality. J Food Sci Technol. https://doi.org/10.1007/s13197-014-1435-2
Vega-Gálvez A, Di SK, Rodríguez K et al (2009) Effect of air-drying temperature on physico-chemical properties , antioxidant capacity , colour and total phenolic content of red pepper. Food Chem 117:647–653. https://doi.org/10.1016/j.foodchem.2009.04.066
Ali MA, Yusof YA, Chin NL, Ibrahim MN (2017) Processing of Moringa leaves as natural source of nutrients by optimization of drying and grinding mechanism. J Food Process Eng:1–17. https://doi.org/10.1111/jfpe.12583
Alibas I, Kacar O (2016) Microwave Drying Kinetics , hypericin Content , effective Moisture Diffusivity and activation Energy of Hypericum perforatum L. Journal of Essential Oil Bearing Plants 19:454–465. https://doi.org/10.1080/0972060X.2016.1159530
Pirbalouti AG, Salehi S, Craker L (2016) Effect of drying methods on qualitative and quantitative properties of essential oil from the aerial parts of coriander. Journal of Applied Research on Medicinal and Aromatic Plants 85:1–9. https://doi.org/10.1016/j.envexpbot.2012.01.010
Acknowledgements
The authors acknowledge the financial support provided by the Tunisian Minister for Higher Education.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interests
The authors declare that there are no conflicts of interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jebri, M., Desmorieux, H., Maaloul, A. et al. Drying of Salvia officinalis L. by hot air and microwaves: dynamic desorption isotherms, drying kinetics and biochemical quality. Heat Mass Transfer 55, 1143–1153 (2019). https://doi.org/10.1007/s00231-018-2498-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00231-018-2498-9