Skip to main content
Log in

Effect of temperature of a vertical parallel silicon solar cell under photo-thermal conditions

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper aims presenting the study of the photo-thermal and behavior of the space charge region for an n + −p vertical parallel junction silicon solar cell under monochromatic illumination. It also deals with mathematical relation related to the use of new approach that involves parameter of the solar cell. The study of the base for an illumination by the rear face allowed us to determine the density of the minority carriers, the photocurrent, the photovoltage. Nyquist and Bode’s representation of recombination velocity, angular frequency and impedance allowed us to give their equivalent circuits. Also we studied the thermal behavior of the solar cell through the temperature which is a very important parameter in the operation of the solar cell. We study the influence of the pulsation on the variation of the temperature and the density of heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sahin G (2016) Effect of wavelength on the electrical parameters of a vertical parallel junction silicon solar cell illuminated by its rear side in frequency domain. Results Phys 6:107–111

    Article  Google Scholar 

  2. Daniel LM, Hwang JM, Robert BC (1988) IEEE Transactions on Electron Devices 35(1):70–78

  3. Nam LQ, Nijs J, Ghannam M, Coppye J (1992) Spectral response of solar cells of high efficiency multicrystalline silicon. J Phys III 2(7):1305–1316

    Google Scholar 

  4. Hollenhorst JN, Hasnain G (1995) Frequency dependent hole diffusion in InGaAs double heterostructures. Appl Phys Lett 67(15):2203–2205

    Article  Google Scholar 

  5. Dieme N (2015) Study of the performance of a parallel vertical junction silicon solar cell under thermal influence. Asian Acad Res J Multidisciplinary 2:2319–2280

    Google Scholar 

  6. Pässler R (2003) Semi-empirical descriptions of temperature dependences of band gaps in semiconductors. Phys Status Solidi 236:710–728

    Article  Google Scholar 

  7. Ricaud A., (1997) Photopiles solaires, presses polytechniques et Universitaires romandes

  8. Sahin G (2016) Effect of temperature on the series and shunt resistance of a silicon solar cell under frequency modulation. J Basic Appl Phys 5(1):21–29

    Article  Google Scholar 

  9. Luque A (1989) Solar cells and optics for photovoltaic concentration, chapter 10: cooling of solar cells - Gabrial Sala, 1st edn. Adam Hilger, Bristol

    Google Scholar 

  10. Mandelis A (1989) Coupled ac photocurrent and photothermal reflectance response theory of semiconducting p-n junctions: I. J Appl Phys 66(11):5572–5583

    Article  Google Scholar 

  11. Vikhrenko VS (2011) Heat Transfer – Engineering Applications, ISBN 978-953-307-361-3, 3rd ed., 412 pages, Publisher: InTech, DOI: https://doi.org/10.5772/2434

  12. Gillet Y, Bissieux C (1999) Diffusion harmonique de la chaleur appliquée au contrô1e non destructif par méthodes photothermiques. Int J Therm Sci 38(6):530–540

    Article  Google Scholar 

  13. Honma N, Munakata C (1987) Sample thickness dependence of minority carrier lifetimes measured using an ac photovoltaic method. Jpn J Appl Phys 26(12):233–236

    Google Scholar 

  14. Grigorieva G, Kagan M, Unishkov V, Zviagina K, Kreinin L, Bordin N, Broder J, Eisenberg Y, Eisenberg N (2010) Efficiency of Bifacial Si Solar Cells at Low Irradiance. Effect of Design and Fabrication Technology Factors. Proceedings of the 25th European Photovoltaic Solar Energy Conference/5th World Conference on Photovoltaic Energy Conversion, Valencia, 1805–1809

  15. Anantha K, Misra NK, Suresh MS (2009) Solar Cell as a Capacitive Temperature Sensor. IEEE Log No. T-AES/47/2/940812

  16. Stefano DE, Nicola S, Federica C, Carlo V, Giuseppe S, Roberto B (2009) Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude-Lorentz model. Appl Surf Sci 255:7203–7211. https://doi.org/10.1016/j.apsusc.2009.03.064

    Article  Google Scholar 

  17. Nadia BB (2006) Propriétés physiques des semi-conducteurs (Si monocristallin et Ge) et Simulation des cellules solaires à base de Si et SiGe

  18. Mathieu H (1987) Physique des Semi-conducteurs et des Composants Electroniques Masson, Paris, 601 p

  19. Harold J (1975) Hovel semiconductors and semimetals, volume 11 solar cells. Academic Press, New York

    Google Scholar 

  20. Barro FI, Sane M, Zouma B (2015) On the capacitance of crystalline silicon solar cells in steady state, Turk J Phys (2015) 39: 122 -127, doi:https://doi.org/10.3906/z-1408-3

  21. Afolabi LO, Al-Kayiem HH, Aklilu TB (2014) Performance analysis of integrated collector system with immersed coil heat exchanger. Appl Mech Mater 660:740–744. https://doi.org/10.4028/www.scientific.net/AMM.660.740

    Article  Google Scholar 

  22. Vikhrenko VS (2011) Heat Transfer – Engineering Applications”, Intech

  23. M Kaviany Essentials of heat transfer: Principles, materials, and applications. Cambridge University Press

  24. Gillet Y, Bissieux C (1999) Diffusion harmonique de la chaleur appliquée au contrôle non destructif par méthodes photothermiques. Int J Therm Sci 38:530–540

    Article  Google Scholar 

  25. Landi GA, Jenkins P, Scheiman D, Rafaelle R (2004) Extended Temperature Solar Cell Technology Development; AIAA 2nd International Energy Conversion Engineering Conferenc August, 16–19

  26. Sane M, Zoungrana M, Diallo HL, Sahin G, Thiam N, Ndiaye M, Dieng M, Sissoko G (2013) Influence of Incidence Angle on the Electrical Parameters of a vertical Silicon Solar Cell under Frequency Modulation, International Journal of Inventive Engineering and Sciences (IJIES) 2319–9598

  27. Valkov S (1994) Electronique analogique, Edition Castéilla, Collection A.CAPLIEZ

  28. Honma N, Munakata C, Shimizu H (1988) Calibration of minority carrier lifetimes measured with an ac photovoltaic method. Jpn J Appl Phys 27(7):1322–1326

    Article  Google Scholar 

  29. Sane M, Sahin G, Barro FI, Maiga AS (2014) Incidence angle and spectral effects on vertical junction silicon solar cell capacitance. Turk J Phys 38:221–227. https://doi.org/10.3906/z-1311-9

    Article  Google Scholar 

  30. Mahjoob S, Vafai K (2008) A synthesis of fluid and thermal transport models for metal foam heat exchangers. Int J Heat Mass Transf 51:3701–3711. https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.012

    Article  MATH  Google Scholar 

  31. Sahin G, Dieng M, Moujtaba MAOE, Ngom MI, Thiam A, Sissoko G (2015) Capacitance of vertical parallel junction silicon solar cell under monochromatic modulated illumination. J Appl Math Phys 3:1536–1543

    Article  Google Scholar 

  32. Ndiaye EH, Sahin G, Dieng M, Thiam A, Diallo HL, Ndiaye M, Sissoko G (2015) Study of the intrinsic recombination velocity at the junction of silicon solar under frequency modulation and irradiation. J Appl Math Phys 3:1522–1535

    Article  Google Scholar 

  33. Mandelis A (1989) Coupled ac photocurrent and photothermal reflectance response theoryof semiconducting p-n junctions. J Appl Phys 66(11):5572–5583

    Article  Google Scholar 

  34. Agroui K (1999) Etude du comportement thermique de modules photovoltaïques de technologie monoverre et biverre au silicium cristallin. Rev Energ Ren. Valorisation 7–11

  35. Hübner A, Aberle AG, Hezel R (2001) 20% Efficient Bifacial Silicon Solar Cells, 14th European PVSEC, pp 1796–1798

  36. Gover A, Stella P (1974) Vertical multijunction solar-CelOne-dimensional analysis. IEEE trans Elect Devic 21(6):351–356

    Article  Google Scholar 

  37. Bashahu M, Habyarimana A (1995) Review and test of methods for determination of the solar cell series resistance. Renew Energy 6(2):127–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Sahin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, G. Effect of temperature of a vertical parallel silicon solar cell under photo-thermal conditions. Heat Mass Transfer 55, 1207–1214 (2019). https://doi.org/10.1007/s00231-018-2488-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2488-y

Keywords

Navigation