Skip to main content

Advertisement

Log in

Performance of hydrocarbon mixture in a direct expansion solar assisted heat pump system

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The energy performance of a direct expansion solar assisted heat pump system, working with a hydrocarbon mixture (HCM) of R290/R1270, 70:30 (by mass ratio) was investigated. The experiments were carried out at a metrological condition existing near Calicut, India. The experimental system mainly consists of a compressor, condenser, thermostatic expansion valve and evaporator collector. A system simulation technique was used for modelling the system. The experimental results obtained are compared with simulation output of the system working with R22 and a mixture of R290/R1270. The selected alternative working fluid mixture showed better energy performance ratio about 5.8% higher. The parametric analysis of the system working with R22 and a mixture of R290/R1270 is investigated with the help of an established system simulation model. The effect of an evaporator (solar collector) area and solar insolation are found to be the significant influencing parameters on the system performance. Moreover, the new hydrocarbon mixture is found to be a good energy efficient and environmental friendly working fluid to phase out R22 in the solar assisted heat pump systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

A c :

area of collector (m2)

C p a :

specific heat of air (kJ Kg− 1 K− 1)

d f :

dust factor

D :

diameter of the tube (m)

HCM :

hydrocarbon mixture

I t :

total solar Insolation (W m− 2)

ṁ:

mass flow rate (kg s− 1)

P :

compressor power consumption (W)

q c :

condenser heating capacity (W)

q e :

heat absorbed by evaporator (W)

S :

solar Insolation (W m− 2)

T :

temperature (0C)

U w :

wind speed (m s− 1)

U o :

heat transfer coefficient (W m− 2)

W :

width of tube (m)

x :

thickness of insulation (m)

a :

air

amb :

ambient

b :

bottom

c :

condenser

dp :

dew point

e :

evaporator

e :

edge

p :

plate

r :

refrigerant

s :

sky

t :

top

α :

absorptance plate material

δ p :

thickness of plate (m)

λ p :

thermal conductivity plate (W m− 1 K− 1)

References

  1. Ito S, Miura N, Takano Y (2005) Studies of heat pumps using direct expansion type solar collectors. J Solar Energy ASME Trans 127:60–64

    Article  Google Scholar 

  2. Ozgener O, Hepbasli A (2007) Modeling and performance evaluation of ground source (geothermal) heat pump systems. Energy Build 39:66–75

    Article  Google Scholar 

  3. Ozgener O, Hepbasli A (2005) Performance analysis of a solar-assisted ground-source heat pump system for greenhouse heating: an experimental study. Build Environ 8:1040–1050

    Article  Google Scholar 

  4. Ozgener O, Hepbasli A (2005) Experimental investigation of the performance of a solar-assisted ground-source heat pump system for greenhouse heating. Int J Energy Res 29:217–231

    Article  Google Scholar 

  5. Li Y, Wang R, Wu J, Xu Y (2007) Experimental performance analysis on a direct expansion solar-assisted heat pump water heater. Appl Therm Eng 27:2858–2868

    Article  Google Scholar 

  6. Hawlader M, Jahangeer K (2006) Solar heat pump drying and water heating in the tropics. Sol Energy 80:492–499

    Article  Google Scholar 

  7. Li Y, Li H, Dai Y, Gao S, Wei L, Li Z, Odinez I, Wang R (2011) Experimental investigation on a solar assisted heat pump in-store drying system. Appl Therm Eng 31:1718–1724

    Article  Google Scholar 

  8. Hawlader M, Dey P K, Diab S, Chung C Y (2004) Solar assisted heat pump desalination system. Desalination 168:49–54

    Article  Google Scholar 

  9. Mohanraj M, Jayaraj S, Muraleedharan C (2011) A review on recent developments in new refrigerant mixtures for vapour compression-based refrigeration, air-conditioning and heat pump units. Int J Energy Res 35:647–669

    Article  Google Scholar 

  10. Mohanraj M, Jayaraj S, Muraleedharan C (2009) Environment friendly alternatives to halogenated refrigerants—A review. Int J Greenhouse Gas Control 3:108–119

    Article  Google Scholar 

  11. Chang Y, Kim M, Ro S (2000) Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system. Int J Refrig 23:232–242

    Article  Google Scholar 

  12. Chaichana C, Aye L, Charters W (2003) Natural working fluids for solar-boosted heat pumps. Int J Refrig 26:637–643

    Article  Google Scholar 

  13. Park K J, Seo T, Jung D (2007) Performance of alternative refrigerants for residential air conditioning applications. Appl Energy 84:985–991

    Article  Google Scholar 

  14. Park K J, Shim Y B, Jung D (2008) Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps. Appl Therm Eng 85:896–900

    Google Scholar 

  15. Park K J, Shim Y B, Jung D (2009) Experimental performance of R432A to replace R22 in residential air-conditioners and heat pumps. Appl Therm Eng 29:597–600

    Article  Google Scholar 

  16. Chata F G, Chaturvedi S, Almogbel A (2005) Analysis of a direct expansion solar assisted heat pump using different refrigerants. Energy Convers Manag 46:2614–2624

    Article  Google Scholar 

  17. Khorasaninejad E, Hajabdollahi H (2014) Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm. Energy 72:680–690

    Article  Google Scholar 

  18. Malinaroli L, Joppolo C M, Antonellis S D (2014) Numerical analysis of the use of R407C in direct expansion solar assisted heat pump. Energy Procedia 48:938–945

    Article  Google Scholar 

  19. Aprea C, Mastrullo R, Renno C (2004) An analysis of the performance of vapor compression plant working both as water chiller and heat pump using R22 and R417A. Appl Thermal Energy 24:487–499

    Article  Google Scholar 

  20. Jabaraj D B, Avinash P, Mohanlal D, Renganarayanan S (2006) Experimental investigation of HFC407C/HC290/HC600a mixture in window air conditioner. Energy Convers Manag 47:2578–2590

    Article  Google Scholar 

  21. Mohanraj M, Jayaraj S, Muraleedharan C (2009) A comparison of the performance of a direct expansion solar-assisted heat pump working with R22 and R407C/Liquid petroleum gas. Proc Ins Mech Eng Part A: J Power Energy 1:223–821

    Google Scholar 

  22. Mohanraj M, Jayaraj S, Muraleedharan C (2010) Exergy Assessment of a Direct Expansion Solar-Assisted Heat Pump Working with R22 and R407C/LPG Mixture. Int J Green Energy 7:65–83

    Article  Google Scholar 

  23. Mohanraj M, Jayaraj S, Muraleedharan C (2008) Modeling of a direct expansion solar assisted heat pump using artificial neural networks. Int J Green Energy 5:520–532

    Article  Google Scholar 

  24. Mohanraj M, Jayaraj S, Muraleedharan C (2009) Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks. Appl Energy 86:1442–1449

    Article  Google Scholar 

  25. Shariah A, Al-Akhras M A, Al-Omari I A (2002) Optimizing the tilt angle of solar collectors. Renew Energy 26:587–598

    Article  Google Scholar 

  26. Holman JP (2007) Experimental methods for engineers, 4th edn. Tata McGraw Hill Publishing Company Limited, New Delhi

    Google Scholar 

  27. Duffie J A, Beckman W A (1980) Solar engineering of thermal processes, 1st edn. Wiley, New York

    Google Scholar 

  28. Sukhatme SP (1984) Solar energy principles of thermal collection and storage, 2nd edn. Tata Mac Graw Hill Publications, New Delhi

    Google Scholar 

  29. Prakash G, Garg HP (2000) Solar energy: Fundamentals and applications, 2nd edn. Tata Mac Graw Hill Publications, New Delhi

    Google Scholar 

  30. Tiwari GN (2002) Solar energy: Fundamentals, design, modelling and applications, 2nd edn. CRC Press, New Delhi

    Google Scholar 

  31. Dincer I, Kanoglu M (2010) Refrigeration systems and applications, 2nd edn. Wiley, New York

    Book  Google Scholar 

  32. Arora CP (2000) Refrigeration and air conditioning, 2nd edn. Tata McGraw-Hill Publications, New Delhi

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Paradeshi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paradeshi, L., Srinivas, M. & Jayaraj, S. Performance of hydrocarbon mixture in a direct expansion solar assisted heat pump system. Heat Mass Transfer 55, 965–977 (2019). https://doi.org/10.1007/s00231-018-2475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2475-3

Navigation