Skip to main content
Log in

An investigation of Marangoni-Benard convection in water based nanofluids

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The impact of copper nanoparticles on Marangoni-Benard convection in water-based nanofluids was investigated numerically by examining the effect of variations in the Rayleigh and Marangoni numbers for different values of the Biot number. The aspect ratio of the cavity, and the interaction of the buoyant forces and forces due to surface tension inhomogeneity were also investigated. The relationship between these parameters and the heat transfer behavior was then determined by examining the average Nusselt number. This allowed the development of a methodology by which the critical values of the Rayleigh number and the Marangoni number could be identified. The results indicated that the average Nusselt number increased with increases in the Biot number. In addition, the presence of the copper nanoparticles enhanced the heat transfer rate significantly, with the positive enhancement increasing with increased Biot number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

C :

Gladstone-Dale constant

c p :

Specific heat

g :

Gravitational acceleration

H :

Height

h :

Surface heat transfer coefficient

k :

Thermal conductivity

L :

Width

L b :

Length of the model in the beam direction

n :

Refractive index

P :

Non-dimensional pressure

p :

Pressure

q :

Heat flux

S :

Fringe number

T :

Temperature

T r :

Reference temperature

u, v :

Velocity components in x and y direction

U, V :

Non-Dimensional velocity components in X and Y direction

x, y :

Cartesian coordinates

X, Y :

Non-dimensional Cartesian coordinates

α :

Thermal diffusivity

β :

Coefficient of thermal expansion

λ :

Wavelength

ϕ :

Concentration of nanoparticles

ρ :

Density

σ :

Surface tension

θ :

Non-dimensional temperature

μ :

Viscosity

ν :

Kinematic viscosity

AR:

Aspect Ratio L/H

Bi :

Biot number

Ma :

Marangoni Number

Nu :

Nusselt number

Pr :

Prandtl number

Ra :

Rayleigh number

C :

Free stream

f :

Property of base fluid

h :

Hot

nf :

Property of nanofluid

r :

Reference Section

s :

Property of nanoparticle added

t :

Test section

w :

Wall

References

  1. Lappa M (2009) Thermal convection: patterns, evolution and stability. John Wiley and Sons, Chichester

    Book  MATH  Google Scholar 

  2. Benard H (1900) Les tourbillons cellulaires dans une nappe liquide. Rev Gen Sci Pure Appl 11:1261–1271

    Google Scholar 

  3. Rayleigh (1916) On convective currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil Mag 32:529–546

    Article  MATH  Google Scholar 

  4. Block MJ (1956) Surface tension as the cause of Benard cells and surface deformation of a liquid film. Nature 178:650–651

    Article  Google Scholar 

  5. Pearson JRA (1958) On convection cells induced by surface tension. J Fluid Mech 4:489–500

    Article  MATH  Google Scholar 

  6. Marangoni CGM (1871) Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche eineranderen. Ann Phys Chem (Poggendorf) 143:337–354

    Article  Google Scholar 

  7. Nield DA (1964) Surface tension and buoyancy effects in cellular convection. J Fluid Mech 19:341–352

    Article  MathSciNet  MATH  Google Scholar 

  8. Berg HJ, Palmer JC (1971) Convective instabilities in liquid pools heated from below. J Fluid Mech 47:779–787

    Article  Google Scholar 

  9. Cliffe KA, Tavenery SJ (1998) Marangoni Benard convection with a deformable free surface. J Comput Phys 145:193–227

    Article  MathSciNet  MATH  Google Scholar 

  10. Cliffe KA, Tavener SJ (2002) Two-fluid Marangoni–Be’nard convection. J Comput Phys 182:277–300

    Article  MathSciNet  MATH  Google Scholar 

  11. Merkt D, Bestehorn M (2003) Bénard–Marangoni convection in a strongly evaporating fluid. Physica-D 185:196–208

    Article  MathSciNet  MATH  Google Scholar 

  12. Boeck T (2005) Benard–Marangoni convection at large Marangoni numbers: results of numerical simulations. Adv Space Res 36:4–10

    Article  Google Scholar 

  13. Sun ZF, Yu KT (2006) Rayleigh–Benard–Marangoni cellular convection expressions for heat and mass transfer rates. Chem Eng Res Des 84(A3):185–191

    Article  Google Scholar 

  14. Rahal S, Cerisier P, Azuma H (2007) Benard–Marangoni convection in a small circular container: influence of the biot and Prandtl numbers on pattern dynamics and free surface deformation. Exp Fluids 43:547–554

    Article  Google Scholar 

  15. Touazi O, Chénier E, Doumenc F, Guerrier B (2010) Simulation of transient Rayleigh–Bénard–Marangoni convection induced by evaporation. Int J Heat Mass Transf 53:656–664

    Article  MATH  Google Scholar 

  16. Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticle. ASME FED 231,

  17. Zoubida H, Abu-Nada E, Oztop H, Mataoui A (2012) A review on natural convective heat transfer of nanofluids. Renew Sust Energ Rev 16:5363–5378

    Article  Google Scholar 

  18. Arifin N, Nazar R, Pop I (2011) Non-isobaric Marangoni boundary layer flow for cu, Al2O3 and TiO2 nanoparticles in a water based fluid. Meccanica 46:833–843

    Article  MathSciNet  MATH  Google Scholar 

  19. Mat NAA, Arifin NM, Nazar R, Ismail F (2012) Radiation effect on Marangoni convection boundary layer flow of a nanofluid. Math Sci 6:21

    Article  MATH  Google Scholar 

  20. Lin Y, Zheng L, Zhang X (2014) Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity. Int J Heat Mass Transf 77:708–716

    Article  Google Scholar 

  21. Aminfar H, Mohammadpourfard M, Mohseni F (2012) Numerical investigation of thermocapillary and buoyancy driven convection of nanofluids in a floating zone. Int J Mech Sci 65:147–156

    Article  Google Scholar 

  22. Saleh H, Hashim I (2015) Buoyant Marangoni convection of nanofluids in square cavity. Appl Math Mech -Engl Ed 36(9):1169–1184

    Article  MathSciNet  Google Scholar 

  23. Namburu PK, Kulkarni DP, Misra D, Das DK (2007) Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Thermal Fluid Sci 32(2):397–402

    Article  Google Scholar 

  24. Khaleduzzaman S, Mahbubul I, Shahrul I, Saidur R (2013) Effect of particle concentration, temperature and surfactant on surface tension of nanofluids. Int Commun Heat Mass Transf 49:110–114

    Article  Google Scholar 

  25. Bhuiyan MHU, Saidur R, Mostafizur RM, Mahbubul IM, Amalina MA (2015) Experimental investigation on surface tension of metal oxide–water nanofluids. Int Commun Heat Mass Transf 65:82–88

    Article  Google Scholar 

  26. Nasrin R, Alim MA, Chamkha AJ (2012) Buoyancy-driven heat transfer of water–Al2O3 nanofluid in a closed chamber: effects of solid volume fraction, Prandtl number and aspect ratio. Int J Heat Mass Transf 55:7355–7365

    Article  Google Scholar 

  27. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–581

    Article  Google Scholar 

  28. Maxwell J (1904) Garnett, Colours in metal glasses and in metallic films. Philos Trans Roy Soc A 203:385–420

    Article  Google Scholar 

  29. Saleh H, Roslan R, Hashim I (2011) Natural convection heat transfer in a nanofluid-filled trapezoidal enclosure. Int J Heat Mass Transf 54:194–201

    Article  MATH  Google Scholar 

  30. Wohlfarth C (2008) Surface tension of water. Surface tension of pure liquids and binary liquid mixtures, springer, New York, 16–21

  31. Majumdar S (1988) Role of under relaxation in momentum interpolation for calculation of flow with non-staggered grids. Num Heat Transf 13:125–132

    Google Scholar 

  32. Eckert ERG, Goldstein RJ (1976) Measurements in heat transfer. McGraw-Hill, New York

    Google Scholar 

  33. Sajith V, Sobhan CB (2008) Digital interferometric measurement of forced convection heat transfer in a miniature rectangular channel. J Exp Heat Transf 21(04):314–333

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhairya R. Vyas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, D.R., Sobhan, C.B. & Peterson, G.P. An investigation of Marangoni-Benard convection in water based nanofluids. Heat Mass Transfer 55, 791–809 (2019). https://doi.org/10.1007/s00231-018-2452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2452-x

Navigation