Skip to main content
Log in

Electronic component cooling inside switch cabinets: combined radiation and natural convection heat transfer

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The thermal conditions inside switch cabinets for industrial applications without cooling devices are equally influenced by natural convection and radiation heat transfer. In this work the open source library OpenFOAM is applied and enhanced, in order to simulate the temperature field of the air inside the cabinet. Turbulent natural convection heat transfer is modeled using Menter’s SST model. Radiation heat transfer is modeled using a surface-to-surface model, whereas the view factors are computed based on a Monte Carlo algorithm. Numerical results obtained with different flow models are compared with measurements and correlations from literature for a cavity and a Rayleigh-Bénard test case. The Radiation model is validated against comparative numerical data. Finally, the models are applied to calculate the temperature field of a switch cabinet test rig. These numerical results are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a 1 :

Bradshaw’s structural parameter ()

A :

surface area (m2)

B :

Turbulence production due to buoyancy (kg m−1 s−3)

c p :

Specific heat capacity at constant pressure (J kg−1 K−1)

C :

Weights (−)

C BVG :

Constant in buoyant vorticity generation term CBVG = 0.35 (−)

F 1 ,F 2 :

Blending function (−)

\( \overline{\overline{F}} \) :

View factor matrix (−)

\( {\overline{\overline{F}}}^{\ast } \) :

View factor matrix after the first smoothing step (−)

\( {\overline{\overline{F}}}_{ij}^{\ast \ast } \) :

View factor matrix after the second smoothing step (−)

\( \overrightarrow{\boldsymbol{g}} \) :

Gravitational acceleration (m s−2)

h :

Specific enthalpy (J kg−1)

H :

Height (m)

\( \overline{\overline{I}} \) :

Identity matrix (−)

k :

Specific turbulence kinetic energy (m2 s−2)

K :

Specific kinetic energy (m2 s−2)

L :

Length (m)

n wall :

Wall distance of the midpoint of the first cell (m)

N :

Number of radiating surfaces inside the switch cabinet (−)

N i :

Number of photons emitted from surface i (−)

N ij :

Number of photons emitted from surface i, that hit surface j (−)

N P :

Number of photons emitted per subarea (−)

N sub :

Number of subareas (−)

Nu :

Local Nusselt number (−)

\( \overline{\boldsymbol{Nu}} \) :

Average Nusselt number (−)

p :

Pressure (Pa)

p tot :

Total pressure \( {p}_{tot}=p+\frac{\rho }{2}\ {\left|\overrightarrow{\mathrm{U}}\right|}^2+\rho \overrightarrow{g}\bullet \overrightarrow{r} \) (Pa)

P k :

Production of specific turbulence kinetic energy \( {P}_k={\mu}_t\frac{\partial {U}_i}{\partial {x}_j}\left(\frac{\partial {U}_i}{\partial {x}_j}+\frac{\partial {U}_j}{\partial {x}_i}\right)\left( kg\ {m}^{-1}\ {s}^{-3}\right) \)

\( {\overset{\sim }{\boldsymbol{P}}}_{\boldsymbol{k}} \) :

Limiter function of Pk, \( {\overset{\sim }{P}}_k=\min \left({P}_k,10\ {\beta}^{\ast }\ \rho\ k\ \omega \right) \) (kg m−1 s−3)

Pr :

Prandtl number (−)

Pr t :

Turbulent Prandtl number (−)

\( \dot{\boldsymbol{Q}} \) :

Heat flow (W)

\( \dot{\boldsymbol{q}} \) :

Heat flux (W m−2)

R :

Specific gas constant (J kg−1 K−1)

Ra :

Rayleigh number (−)

S :

Absolute value of the strain rate \( S=\sqrt{2\ {S}_{ij}} \) (s−1)

\( \overline{\overline{S}} \) :

Strain rate tensor \( \overline{\overline{S}}=\frac{1}{2}\left(\frac{\partial {U}_i}{\partial {x}_j}+\frac{\partial {U}_j}{\partial {x}_i}\right) \) (s−1)

t :

Time (s)

T :

Temperature (K)

\( \overrightarrow{\boldsymbol{U}} \) :

Velocity (m s−1)

β,β :

Turbulence model coefficients ()

γ :

Turbulence model coefficient (−)

\( \overline{\overline{\delta}} \) :

Kronecker symbol (−)

ε :

Total hemispherical emissivity (−)

λ :

Molecular thermal conductivity (W m−1 K−1)

λ t :

Turbulent thermal conductivity (W m−1 K−1)

μ :

Molecular viscosity (kg m−1 s−1)

μ t :

Eddy viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

σ :

Stefan-Boltzmann constant (W m−2 K−4)

σ k ω ω 2 :

Turbulence model coefficients (−)

\( \overline{\overline{\tau}} \) :

Stress tensor (N m−2)

ω :

Specific dissipation rate (s−1)

air:

Air

amb:

Ambient

BVG:

Buoyant vorticity generation

c:

Cold

con:

Convection

h:

Hot

PISO:

Pressure-Implicit with Splitting of Operators

PIMPLE:

Combined PISO and SIMPLE

PLC:

Programmable logic controller

RANS:

Reynolds averaged Navier-Stokes

rad:

Radiation

SGDH:

Simple gradient diffusion hypothesis

SIMPLE:

Semi-implicit Method for Pressure Linked Equations

SST:

Shear stress transport

URANS:

Unsteady Reynolds averaged Navier-Stokes

wall:

Wall

References

  1. Heidemann W, Staub C, Spindler K (2014) Energy efficient cooling of switch cabinets using optimized internal settings, Proc of the 15th Int. Heat Transf Conf., Paper No. 8632, IHTC-15, 10–15 August

  2. Jasak H (1996) Error analysis and estimation for the finite volume method with applications to fluid flows, University of London, Dissertation

  3. Gray DD, Giorgini A (1976) The validity of the Boussinesq approximation for liquids and gases. Int J Heat Mass Transf 19:545–551

    Article  MATH  Google Scholar 

  4. Kis P, Herwig H (2010) A systematic derivation of a consistent set of "Boussinesq equations". Heat Mass Transf 46:1111–1119

    Article  Google Scholar 

  5. El Moutaouakil L, Zrikem Z, Abdelbaki A (2014) Performance of various RANS eddy-viscosity models for tubulent natural convection in tall vertical cavities. Heat Mass Transf 50:1103–1113

    Article  Google Scholar 

  6. Schlichting H, Gersten K (2006) Grenzschicht-Theorie, 10. überarbeitete Auflage. Springer, Berlin

    Google Scholar 

  7. Kumar R, Dewan A (2014) URANS computations with buoyancy corrected turbulence models for turbulent thermal plumes. Int J Heat Mass Transf 72(72):680–689

    Article  Google Scholar 

  8. Casey M, Wintergerste T (2000) Best practice guidelines, ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD

  9. Grötzbach G (2007) Anisotropy and buoyancy in nuclear turbulent heat transfer - critical assessment and needs for modelling, Forschungszentrum Karlsruhe in der Helmholtz-Gesellschaft

  10. Hanjalic K (2002) One-point closure models for buoyancy-driven turbulent flows. Annual Rev Fluid Mechanics 34:321–347

    Article  MathSciNet  MATH  Google Scholar 

  11. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605

    Article  Google Scholar 

  12. Singh NK, Premachadran B (2016) Analysis of turbulent natural and mixed convection flows using the v2-f model. J Heat Transf 138:1–13

    Article  Google Scholar 

  13. Rathore SK, Das MK (2016) Investigations of the relative performance of various low-Reynolds number turbulence models for buoyancy-driven flow in a tall cavity. Heat Mass Transf 52:437–457

    Article  Google Scholar 

  14. Menter F, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model. Turbulence, Heat Mass Transf 4:625–632

    Google Scholar 

  15. Ansys Fluent 12.0, Theory guide, [Online]. Available: https://www.sharcnet.ca/Software/Fluent6/html/ug/node572.htm. [Accessed 13 12 2017]

  16. Nicolette V, Tieszen S, Black A, Domino S, O'Hern T (2005) A turbulence model for buoyant flows based on vorticity generation. Center of Turbulence Research, Proc of the Summer Program 1998:287–302

    Google Scholar 

  17. Van Maele K, Merci B (2006) Application of two buoyancy-modified k-epsilon turbulence models to different types of buoyant plumes. Fire Saf J 41:122–138

    Article  Google Scholar 

  18. Shabbir A, Taulbee DB (1990) Evaluation of turbulence models for predicting buoyant flows. J Heat Transf 112:945–951

    Article  Google Scholar 

  19. Henkes RAWM, Hoogendoorn CJ (1989) Comparison of turbulence models for the natural convection boundary layer along a heated vertical plate. Int J Heat Mass Transf 32:157–169

    Article  MATH  Google Scholar 

  20. Cheesewright KJ, King J, Ziai S (1986) Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity flows. Proc ASME Meet HDT 60:75–81

    Google Scholar 

  21. King KJ (1989) Turbulent natural convection in cavities, dissertation, Queen Mary College, London, United Kingdom

  22. Peng S-H, Davidson L (1999) Computation of turbulent buoyant flows in enclosures with low-Reynolds number k-omega models. Int J Heat Fluid Flow 20:172–184

  23. Wilcox DC (1994) Simulation of transition with a two-equation turbulence model. AIAA J 32:247–254

    Article  MATH  Google Scholar 

  24. Hölling M (2006) Asymptotische Analyse von turbulenten Strömungen bei hohen Rayleigh-Zahlen, Technische Universität Hamburg-Harburg: Dissertation 2006

  25. Versteegh TAM, Niuwstadt FTM (1999) A direct numerical simulation of natural convection between two infinite vertical differntially heated walls: scaling laws and wall functions. Int J Heat Mass Transf 42:3673–3693

    Article  MATH  Google Scholar 

  26. Hollands KGT, Raithby GD, Konicek L (1975) Correlation equations for free convection heat transfer in horizontal layers of air and water. Int J Heat Mass Transf 18:879–884

    Article  Google Scholar 

  27. Merker GP (1987) Konvektive Wärmeübertragung. Springer, Berlin

    Book  Google Scholar 

  28. Martynenko OG, Khramtsov PP (2005) Free-convective heat transfer. Springer, Berlin

    Google Scholar 

  29. Hölling M, Herwig H (2006) Asymptotic analysis of heat transfer in turbulent Rayleigh–Benard convection. Int J Heat Mass Transf 49:1129–1136

    Article  MATH  Google Scholar 

  30. Tieszen S, Ooi A, Durbin P, Behnia M (1998) Modeling of natural convection heat transfer, Ann Res Briefs Center Turbul Res, pp. 287–302

  31. Baehr HD, Stephan K (2006) Heat and mass transfer. Springer, Berlin

    Book  MATH  Google Scholar 

  32. Modest MF (2013) Radiative heat transfer. Academic Press, Oxford

    Book  Google Scholar 

  33. Rohsenow WM, Hartnett JP, Cho YI (1998) Handbook of heat transfer, third edition. McGraw-Hill, New York

    Google Scholar 

  34. Frank A, Heidemann W, Spindler K (2016) Modeling of the surface-to-surface radiation exchange using a Monte Carlo method, J Phys: Conference Ser 745

  35. Hoff SJ, Janni KA (1989) Monte Carlo technique for the determination of thermal radiation shape factors. American Society of Agricultural Engineers 32:1023–1028

    Article  Google Scholar 

  36. Loehrke RI, Dolaghan JS, Burns PJ (1995) Smoothing Monte Carlo exchange factors. J Heat Transf 117:524–526

    Article  Google Scholar 

  37. Mentor Graphics, Product description of Flotherm, 13 12 2017. [Online]. Available: https://www.mentor.com/products/mechanical/flotherm/flotherm/

  38. Wilcox DC (1998) Turbulence modeling for CFD. DCW Industries, Inc., United States

    Google Scholar 

Download references

Acknowledgments

This research was supported by a foundation of Friedrich Lütze GmbH. The authors gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Frank.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, A., Heidemann, W. & Spindler, K. Electronic component cooling inside switch cabinets: combined radiation and natural convection heat transfer. Heat Mass Transfer 55, 699–709 (2019). https://doi.org/10.1007/s00231-018-2427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2427-y

Navigation