Advertisement

Multi-scale hybrid numerical model for the study of mass transfer through a microporous artificial membrane

  • Jonathan Florez Giraldo
  • Salvatore Cito
  • Anton Vernet
  • Clara Salueña
Original

Abstract

Quantification of mass transfer processes across micro-porous membranes can give valuable insight in applications of industrial and medical relevance. In this paper, a hybrid lattice Boltzmann-Finite differences (LBM-FD) code with non-uniform grid that simulates the mass transfer on a chip-like micro-device with an embedded micro-porous membrane has been developed. The model is validated showing good agreement with results of the Graetz-Leveque problem, even for Péclet numbers above 106, where conventional numerical methods fail to predict the correct behavior. The errors obtained in our simulations are below 1%. Simulations of the micro-porous membrane model in two and three dimensions show a linear scaling of the average Sherwood number with the number of pores and a value 1/3 of the scaling exponent of the Péclet number.

Notes

Acknowledgements

Support from the Spanish Ministerio de Economía y Competitividad under grants CTQ2013-46799-C2-1-P and DPI2016-75791-C2-1-P is gratefully acknowledged.

References

  1. 1.
    Kenig EY, Su Y, Lautenschleger A, chasanis P, Grünewald M (2013) Micro-separation of fluid systems: a state-of-the-art review. Sep Purif Technol 120:245–64CrossRefGoogle Scholar
  2. 2.
    Chabanon E, Belaissaoui B, Favre E (2014) Gas-liquid separation processes based on physical solvents: opportunities for membranes. J Membr Sci 459:52–61CrossRefGoogle Scholar
  3. 3.
    Al-Marzouqi M, El-Naas MH, Marzouk SA, Al-Zarooni MA, Abdullatif N (2008) Modeling of CO2 absorption in membrane contactors. Sep Purif Technol 59:286–93CrossRefGoogle Scholar
  4. 4.
    Liu H et al (2016) Multiphase lattice Boltzmann simulations for porous media applications. Comput Geosci 20:777–805MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zhang W, Li J, Chen G, You W, Ren Z (2010) Simulations of solute concentration profile and mass transfer behavior near the membrane surface with finite volume method. J Membr Sci 355:18–27CrossRefGoogle Scholar
  6. 6.
    Zhang W, Hao Z, Chen G, Li J, Li Z, Wang Z, Ren Z (2014) Effect of porosity on mass transfer of gas absorption in a hollow fiber membrane contactor. J Membr Sci 470:399–410CrossRefGoogle Scholar
  7. 7.
    Zhang W, Li J, Chen G, You W, Jiang Y, Sun W (2010) Experimental study of mass transfer in membrane absorption process using membranes with different porosities. Ind Eng Chem Res 49:6641–48CrossRefGoogle Scholar
  8. 8.
    Miranda JM, Campos JBLM (2001) An improved numerical scheme to study mass transfer over a separation membrane. J Membr Sci 188:49–59CrossRefGoogle Scholar
  9. 9.
    Miranda JM, Campos JBLM (2002) Mass transfer in the vicinity of a separation membrane-the applicability of the stagnant film theory. J Membr Sci 202:137–50CrossRefGoogle Scholar
  10. 10.
    Miranda JM, Campos JBLM (2007) Numerical study of a hybrid membrane cell with semi and fully permeable membrane sub-sections. Chem Eng Sci 62:1215–29CrossRefGoogle Scholar
  11. 11.
    Li C, Wagner M, Lackner S, Horn H (2016) Assessing the influence of bio?lm surface roughness on mass transfer by combining optical coherence tomography and two-dimensional modeling. Biotechnol Bioeng 113(5):989–1000CrossRefGoogle Scholar
  12. 12.
    Huh D, Matthews BD, Mammoto A, Montoya-Savala M, Hsin HY, Ingber DE (2010) Reconstituing organ-level lung functions on a chip. Science 328:1662–68CrossRefGoogle Scholar
  13. 13.
    Leveque A (1928) Les lois de la de la transmission de chaleur par convection. Ann des Mines 13:201–99Google Scholar
  14. 14.
    Li Q, Zhou P, Yan HJ (2016) Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method. Phys Rev E 94:043313MathSciNetCrossRefGoogle Scholar
  15. 15.
    Holzbecher E (2008) Numerical solutions for the Leveque problem of Boundary Layer mass or heat flux. Excerpt from the Proceedings of the COMSOL Conference HannoverGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations