Skip to main content
Log in

Species separation in Ranque-Hilsch vortex tube using air as working fluid

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A set of experimental as well as theoretical species separation studies in Ranque-Hilsch Vortex Tube (RHVT) with air as a binary gas mixture have been explored in this paper. The mixture is compressed and tangentially introduced into the vortex chamber of the RHVT and two streams are withdrawn at opposite ends of the device. Thermal as well as species separation are observed between these two outlet streams. Main objective of this paper is to analyse the role of most important geometrical and process parameters that influence species separation in RHVT. Another objective of this work is to present an improved version of a mathematical model to predict mass transfer in a counter current RHVT. A preliminary version of the model has been presented in a previous publication [1]. The model is validated with data obtained from in-house experiments conducted as well as data reported in literature by various researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A c :

Exposed cold surface area (m2)

A h :

Exposed hot surface area (m2)

c p :

Specific heat of gas at constant pressure (J/K)

d c :

Cold orifice diameter (m).

d i :

Vortex tube inlet diameter (m).

D vt :

Vortex tube diameter (m).

D f :

Coefficient of diffusion (m2/s).

F (1–3) :

Model parameter between inlet and hot outlet.

P 1 :

Inlet pressure (Pa)

P 2 :

Cold outlet pressure (Pa)

R :

Universal gas constant (=8.314 J / mol. K)

Ra D :

Rayleigh number (=GrD. Pr)

Re :

Reynolds number (\( \frac{d_i{v}_i\rho }{\mu } \))

T :

Average gas temperature (K)

T 1 :

Cold outlet temperature (K)

T 2 :

Cold outlet temperature (K)

T 3 :

Hot outlet temperature (K)

T amb :

Ambient temperature (K)

T c,S :

Cold end temperature from Shannk model (K).

T h,S :

Hot end temperature from Shannk model (K)

T s :

Surface temperature (K)

T α :

Ambient temperature (K)

u :

Rates of diffusional separation in radial direction per unit tube length, kg/(m.s)

v i :

Vortex tube inlet velocity (m/s)

v Ɵ :

Azimuthal component of gas velocity (m/s)

v z :

Axial component of gas velocity (m/s)

X :

Normalized pressure drop between the inlet and the cold end of the vortex tube

F (2–3) :

Model parameter between cold and hot outlet

g :

Gravitational acceleration (=9.81 m/s2)

Gr D :

Grashof Number \( =\left(\frac{g\beta \Delta T{D}_{vt}^3}{\nu^{2.}}\right) \)

h avg :

Average heat transfer coefficient (W/m2K)

k :

Thermal conductivity (W/m K)

L :

Length of vortex tube (m)

m 1 :

Inlet mass flow rate (kg/s)

m 2 :

Cold outlet mass flow rate (kg/s)

m 3 :

Hot outlet mass flow rate (kg/s)

M m :

Mean molecular weight of gas (kg mole)

N :

Concentration in mole fraction of the lighter component

Nu D :

Nusselt number

N 2 :

Mole fraction of heavier species at hot outlet

N 3 :

Mole fraction of heavier species at cold outlet

Pr :

Prandtl number (\( \frac{c_p\mu }{k} \))

P o :

Average pressure between inlet and cold outlet (Pa)

α:

Separation factor

β :

Coefficient of expansion of fluid (K−1)

γ :

Ratio of specific heats

ΔM :

Difference in molecular weight of two species (Mole)

∆T 2, L :

Drop in cold outlet temperature, experimental value from literature (K)

∆T 2, S :

Drop in cold outlet temperature, from Shannak model (K)

∆T 3, L :

Rise in hot outlet temperature, experimental value from literature (K)

∆T 3, S :

Rise in hot outlet temperature, from Shannak model (K)

∆T C :

Correction for rise in cold outlet temperature (K)

∆T h :

Correction for fall in hot outlet temperature (K)

A :

Elementary separation factor for a multicomponent gas mixture

θ c :

Cold mass fraction

θ c, opt :

Optimum value of cold mass fraction

θ h :

Partial cut of the heavier component

θ l :

Partial cut of the lighter component

μ :

Viscosity (Pa.s)

ν :

Kinematic viscosity (m2/s)

ρ :

Density (kg/m3)

References

  1. Chatterjee M, Mukhopadhyay S, Vijayan PK (2017) 1-D model for mass transfer calculation in vortex tube using heat and mass transfer analogy. American Journal of Heat and Mass Transfer 4(1):1–24. https://doi.org/10.7726/ajhmt.2017.1001

    Article  Google Scholar 

  2. Whitaker JM (2005) Uranium enrichment plant characteristics - A training Manual for the IAEA, ORNL/TM-2005/43, ISPO/310-R1

  3. Alant TG, Schumann WA (1980) Some interesting developments relating to gas dynamics in the application of UCOR process for isotope separation. Twelfth International symposium on rarefied gas dynamics. In: Fisher SS (ed) University of Virginia, Charlottesville

  4. Krass AS, Boskma P, Elzen B, Smit WA (1983) Uranium Enrichment and Nuclear Weapon proliferation. Taylor and Francis Ltd, London and New York

    Google Scholar 

  5. Shamsoddini R, Nezhad AH (2010) Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube. Int J Refrig 33:774–782. https://doi.org/10.1016/j.ijrefrig.2009.12.029

    Article  Google Scholar 

  6. Ranque GJ (1933) Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air. J Phys Radium (Paris) 4:112–114 S-115

    Google Scholar 

  7. Ranque GJ (1934) Method and apparatus for obtaining from a fluid under pressure two outputs of fluid at different temperatures. US Patent 1:952 281

    Google Scholar 

  8. Xue Y, Arjomandi M, Kelso R (2011) Visualization of flow structure in a vortex tube. Exp Thermal Fluid Sci 35(8):1514–1521. https://doi.org/10.1016/j.expthermflusci.2011.07.001

    Article  Google Scholar 

  9. Corr JE (1948) The vortex tube. G-E data folder no. 45289

  10. Fulton CD (1950) Ranque's Tube. Journal of the ASRE. Refrigerating Engineering 58(5):473–479

    Google Scholar 

  11. Webster DS (1950) An Analysis of the Hilsch Vortex Tube. J. ASRE. Refrigeration Eng 58:163–171

    Google Scholar 

  12. Scheper GW (1951) The vortex tube–internal flow data and a heat transfer theory. J. ASRE Refrigeration Eng 59:985–989

    Google Scholar 

  13. Van Deemter JJ (1952) On the theory of the RanqueHilsch cooling effect. Appl Sci Res A 3:174–196. https://doi.org/10.1007/BF03184927

    Article  Google Scholar 

  14. Pengelly CD (1957) Flow in viscous vortex. J Appl Phys 28:86–92. https://doi.org/10.1063/1.1722578

    Article  Google Scholar 

  15. Lay JE (1959) An experimental and analytical study of vortex-flow temperature separation by superposition of spiral and axial flow, part II. Trans. ASME J. Heat Transfer 81:213–222

    Google Scholar 

  16. Kreith F, Margolis D (1959) Heat transfer and friction in turbulent vortex flow. Flow, Turbulence and Combustion 8(1):457–473. https://doi.org/10.1007/BF00411769

    Article  MATH  Google Scholar 

  17. Deissler RG, Perlmutter M (1960) Analysis of the flow and energy separation in a turbulent vortex. Int. J. Heat Mass Transf 1:173–191. https://doi.org/10.1016/0017-9310(60)90021-1

    Article  Google Scholar 

  18. Parulekar BB (1961) The short vortex tube. The Journal of Refrigeration 4:74–80

    Google Scholar 

  19. Reynolds AJ (1961) On the dynamics of turbulent vortical flow. Z Angew Math Phys 12:149–158. https://doi.org/10.1007/BF01601014

    Article  MathSciNet  MATH  Google Scholar 

  20. Reynolds AJ (1962) Energy flow in a vortex tube. Z Angew Math Phys 12:343–356. https://doi.org/10.1007/BF01591284

    Article  MathSciNet  MATH  Google Scholar 

  21. Silbulkin M (1962) Unsteady viscous circular flow-application to the Ranque Hilsch vortex tube. J Fluid Mech:12269–12293

  22. Alimov RZ (1966) Flow friction and heat and mass transfer in a swirled flow. Journal of Engineering Physics and thermo physics 10(4):251–257. https://doi.org/10.1007/BF00837815

    Article  Google Scholar 

  23. Gutsol A (1997) The Ranque effect. Physics-Uspekhi 40(6):639–658. https://doi.org/10.1070/PU1997v040n06ABEH000248

    Article  Google Scholar 

  24. Linderstrom-Lang CU (1971) Gas separation in the Ranque-Hilsch vortex tube model calculations based on flow data. Riso report, Denmark

    Google Scholar 

  25. Amitani T, Adachi T, Kato T (1983) A study on temperature separation in a large vortex tube. Japan Soc Mech Eng 49:877–884

    Google Scholar 

  26. Stephan K, Lin S, Durst M, Huang F, Seher D (1983) An investigation of energy separation in a vortex tube. Int. J. Heat Mass Transf 26:341–348. https://doi.org/10.1016/0017-9310(83)90038-8

    Article  Google Scholar 

  27. Kurosaka M (1982) Acoustic streaming in swirl flow and the Ranque–Hlisch (vortex tube) effect. J Fluid Mech 124:139–172. https://doi.org/10.1017/S0022112082002444

    Article  Google Scholar 

  28. Chu JG (1982) Acoustic streaming as a mechanism of the Ranque-Hilsch effect. PhD dissertation, University of Tennessee, Knoxville

  29. Kuroda H (1983) An experimental study of temperature separation in swirling flow. PhD dissertation, University of Tennessee, Knoxville

  30. Cockerill T (1998) Thermodynamics and Fluid Mechanics of a Ranque–Hilsch Vortex tube. Masters thesis, University of Cambridge, England

  31. Frohlingsdorf W (1997) Unters chungenzur kompressiblen Stro¨mung und Energietrennungim Wirbelrohrnach Ranque und Hilsch. PhD dissertation, Ruhr-Universitat-Bochum, In German

  32. Ahlborn BK, Groves S (1997) Secondary flow in a vortex tube. Fluid Dynamics Research 21:73–86. https://doi.org/10.1016/S0169-5983(97)00003-8

    Article  Google Scholar 

  33. Ahlborn BK, Gordon JM (2000) The vortex tube as a classic thermodynamic refrigeration cycle. J Appl Phys 88(6):3645–3653. https://doi.org/10.1063/1.1289524

    Article  Google Scholar 

  34. Gao C (2005) Experimental Study on the Ranque-Hilsch Vortex Tube. PhD Thesis, Eindhoven University of Technology, the Netherlands

  35. Leont'ev AI (2002) Gas-Dynamic Methods of Temperature Stratification. Fluid Dynamics 37(4):512–529 Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza 6–26

    Article  MATH  Google Scholar 

  36. Baker PS, Rathkamp WS (1954) Investigations on Ranque-Hilsch vortex tube. ORNL-1659, Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  37. Linderstrom-Lang CU (1964) Gas separation in the Ranque-Hilsch vortex tube. Journal Heat Mass Transfer 7:1195–1206. https://doi.org/10.1016/0017-9310(64)90061-4

    Article  Google Scholar 

  38. Linderstrom-Lang CU (1966) Gas separation in the Ranque-Hilsch vortex tube model calculations based on flow data. Riso report, Denmark

    Google Scholar 

  39. Linderstrøm-Lang CU (1967) A model of the gas separation in a Ranque-Hilsch vortex tube. Acta Polytechnica Scandnavica Physics including nucleonics series no. 45. https://doi.org/10.1002/zamm.19720520316

    Article  Google Scholar 

  40. Linderstrom-Lang CU (1967) On gas separation in a Ranque Hilsch Vortex Tube. Z Naturforschg 22(a):835–837

    Google Scholar 

  41. Marshall J (1977) Effect of operating conditions, physical size, and fluid characteristics on the gas separation performance of a Linderstrom-Lang vortex tube. International Journal Heat Mass Transfer 20:227–231. https://doi.org/10.1016/0017-9310(77)90209-5

    Article  Google Scholar 

  42. Xue Y, Arjomandi M, Kelso R (2012) Experimental study of the flow structure in a counter flow Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 55:5853–5860. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.081

    Article  Google Scholar 

  43. Mohammadi S, Farhadi F (2014) Experimental and numerical study of the gas–gas separation efficiency in a Ranque–Hilsch vortex tube. Sep Purif Technol 138:177–185. https://doi.org/10.1016/j.seppur.2014.10.022

    Article  Google Scholar 

  44. Farouk T, Farouk B, Gutsol A (2009) Simulation of gas species and temperature separation in the counter-flow Ranque-Hilsch vortex tube using the large eddy simulation technique. Int J Heat Mass Transf 52:3320–3333. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.016

    Article  MATH  Google Scholar 

  45. Dutta T, Sinhamahapatra KP, Bandyopadhyay SS (2011) Numerical investigation of gas species and energy separation in the Ranque-Hilsch vortex tube using real gas model. Int J Refrig 34(8):2118–2128. https://doi.org/10.1016/j.ijrefrig.2011.06.004

    Article  Google Scholar 

  46. Rafiee SE, Sadeghiazad MM (2014) Three-dimensional and experimental investigation on the effect of cone length of throttle valve on thermal performance of a vortex tube using k-ε turbulence model. Appl Therm Eng 66:65–74. https://doi.org/10.1016/j.applthermaleng.2014.01.073

    Article  Google Scholar 

  47. Chatterjee M, Mukhopadhyay S, Vijayan PK (2016) Experimental study of heat and mass transfer in RanqueHilsch Vortex tube. Int J Adv Res 4(7):666–674 (ISSN 2320-5407)

    Article  Google Scholar 

  48. Kevin TR, Michael M, Anna P, Douglas S, Terry T (2001) A vortex contactor for carbon dioxide separations. Idaho National Engineering and Environmental Laboratory, Idaho Falls

  49. Kulkarni M, Sardesai C (2002) Enrichment of methane concentration via separation of gases using vortex tubes. Journal Energy Eng 128:1–12. https://doi.org/10.1061/(ASCE)0733-9402(2002)128:1(1)

    Article  Google Scholar 

  50. Fekete LA (1986) Vortex tube separator may solve weight/space limitations. World Oil, July, pp 40–44

    Google Scholar 

  51. Balepin V, Rosholt D (1998) Progress in air separation with the vortex tube. In: Proceedings of the 34th Joint Propulsion Conference and Exhibit, AIAA-98-3776, Cleveeland. https://doi.org/10.2514/6.1998-3776

  52. Crocker AM, White SM, Bremer F Jr. (2003) Experimental results of a vortex tube air separator for advanced space transportation. In: Proceedings of the 39th Joint Propulsion Conference and Exhibit, AIAA-2003-4451, Huntsville. https://doi.org/10.2514/6.2003-4451

  53. Dutta T, Sinhamahapatra KP, Bandyopadhyay SS (2013) CFD Analysis of Energy Separation in Ranque-Hilsch Vortex Tube at Cryogenic Temperature. Journal of Fluids 2013(562027):1–14

    Article  Google Scholar 

  54. Khodorkov L, Poshernev NV, Zhidkov NV (2003) The vortex tube—a universal device for heating, cooling, cleaning, and drying gases and separating gas mixtures. Chem Pet Eng 39(7–8):409–415

    Article  Google Scholar 

  55. Poshernev NV, Khodorkov IL (2004) Natural-gas tests on a conical vortex tube (CVT) with external cooling. Chem Pet Eng 40(3–4):212–217

    Article  Google Scholar 

  56. Riu K, Kim J, Choi I (2004) Experimental Investigation on Dust Separation Characteristics of a Vortex Tube. JSME International Journal B 47(I):29–36

    Article  Google Scholar 

  57. Yilmaz M, Kaya M, Karagoz S, Erdogan S (2009) A review of design criteria for vortex tubes. Heat and Mass Transfer 45:613–632. https://doi.org/10.1007/s00231-008-0447-8

    Article  Google Scholar 

  58. Liew R, Michalek WR, Zeegers JCH, Kuerten J GM (2011) Droplet behaviour in a Ranque-Hilsch vortex tube. Journal of Physics: Conference Series 318, 13th European Turbulence Conference (ETC13). https://doi.org/10.1088/1742-6596/318/5/052013

    Google Scholar 

  59. Kukis VS, Omelchenko EA, Raznoshinskaia AV (2015) Results of vortex tube usage in diesel exhaust gas recirculation system. Procedia Engineering 129:151–155. https://doi.org/10.1016/j.proeng.2015.12.024

    Article  Google Scholar 

  60. Raiskee YD, Tunkel LE (1974) Influence of vortex-tube configuration and length on the process of energetic gas separation. Inzhenerno-Fizicheskil Zhurnal 27(6):1128–1133. https://doi.org/10.1007/BF00863014

    Article  Google Scholar 

  61. Skye HM, Nellis GF, Klein SA (2006) Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube. Int J Refrig 29(1):71–80. https://doi.org/10.1016/j.ijrefrig.2005.05.004

    Article  Google Scholar 

  62. Bramo AR, Pourmahmoud N (2011) Computational fluid dynamics simulation of length to diameter ratio effects on the energy separation in a vortex tube. Therm Sci 15(3):833–848. https://doi.org/10.2298/TSCI101004008B

    Article  Google Scholar 

  63. Promvonge P, Eiamsa-ard S (2005) Investigation on the Vortex Thermal Separation in a Vortex Tube Refrigerator. Sci Asia 31:215–223

    Article  MATH  Google Scholar 

  64. Eiamsa-ard S, Wongcharee K, Promvonge P (2010) Experimental investigation on energy separation in a counter-flow Ranque–Hilsch vortex tube: effect of cooling a hot tube. Int Commun Heat Mass Transf 37:156–162. https://doi.org/10.1016/j.icheatmasstransfer.2010.02.007 10.1016/j.icheatmas stransfer.2009.09.013

    Article  Google Scholar 

  65. Nimbalkar SU, Muller MR (2009) An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube. Appl Therm Eng 29:509–514. https://doi.org/10.1016/j.applthermaleng.2008.03.032

    Article  Google Scholar 

  66. Im SY, Yu SS (2012) Effects of geometric parameters on the separated air flow temperature of a vortex tube for design optimization. Energy 37:154–160. https://doi.org/10.1016/j.energy.2011.09.008

    Article  Google Scholar 

  67. Saidi MH, Valipour MS (2003) Experimental modeling of vortex tube refrigerator. Appl Therm Eng 23:1971–1980. https://doi.org/10.1016/S1359-4311(03)00146-7

    Article  Google Scholar 

  68. Ahlborn B, Camire J, Keller JU (1996) Low pressure vortex tubes. J Phys D Appl Phys 29:1469–1472. https://doi.org/10.1088/0022-3727/29/6/009

    Article  Google Scholar 

  69. Becker EW (1979) Uranium Enrichment. In: Villani S (ed) Topics in applied physics, volume 35. Springer-Verlag, New York

  70. Dunthorn DI (1968) Design of batch desublimers. No. KL-6220. Oak Ridge Gaseous Diffusion Plant, Tennese

  71. Takahama H (1965) Studies on Vortex Tubes (1) Experiments on efficiency of energy separation (2) On profiles of velocity and temperature. The Japan Society of Mechanical Engineers 8(31):433–440

    Article  Google Scholar 

  72. Soni Y, Thomson WJ (1975) Optimum design of the Ranque Hilsch Vortex Tube. Transactions of ASME May 1975:316–321

    Article  Google Scholar 

  73. Lewins J, Bejan A (1999) Vortex tube optimization theory. Energy 24:931–943. https://doi.org/10.1016/S0360-5442(99)00039-0

    Article  Google Scholar 

  74. Shannak BA (2004) Temperature separation and friction losses in vortex tube. Heat Mass Transf 40:779–785. https://doi.org/10.1007/s00231-003-0485-1

    Article  Google Scholar 

  75. Simões-Moreira JR (2010) An air-standard cycle and a thermodynamic perspective on operational limits of Ranque–Hilsh or vortex tubes. Int J Refrig 33:765–773

    Article  Google Scholar 

  76. Subudhi S, Sen M (2015) Review of Ranque–Hilsch vortex tube experiments using air. Renew Sust Energ Rev 52:172–178. https://doi.org/10.1016/j.rser.2015.07.103

    Article  Google Scholar 

  77. Hilsch R (1947) The use of the expansion of gases in a centrifugal field as cooling process. Rev Sci Instrum 18(2):108–113. https://doi.org/10.1063/1.1740893

    Article  Google Scholar 

  78. Martynovskii VS, Alekseev VP (1956) Investigation of the vortex thermal separation effect for gases and vapors. SovOhys-Tech Phys 1(10):2233–2243

    Google Scholar 

  79. Scheller WA, Brown GM (1957) The Ranque-Hilsch vortex tube. Ind Eng Chem 49(6):1013–1016. https://doi.org/10.1021/ie50570a035

    Article  Google Scholar 

  80. Bruun HH (1969) Experimental investigation of the energy separation in vortex tubes. Journal of Mech. Eng Sci 11(6):567–582. https://doi.org/10.1243/JMES_JOUR_1969_011_070_02

    Article  Google Scholar 

  81. Aljuwayhel NF, Nellis GF, Klein SA (2005) Parametric and internal study of the vortex tube using a CFD model. Int J Refrig 28:442–450. https://doi.org/10.1016/j.ijrefrig.2004.04.004

    Article  Google Scholar 

  82. Aydin O, Baki M (2006) An experimental study on the design parameters of a counter flow vortex tube. Energy 31:2763–2772. https://doi.org/10.1016/j.energy.2005.11.017

    Article  Google Scholar 

  83. Hamoudi AF (2006) An investigation of micro-scale Ranque-Hilsch vortex tube Master's thesis. Dissertation, University of Windsor

  84. Valipour MS, Niazi N (2011) Experimental modelling of a curved Ranque-Hilsch vortex tube refrigerator. Int J Refrig 34:1109–1116. https://doi.org/10.1016/j.ijrefrig.2011.02.013

    Article  Google Scholar 

  85. Bejan A, Krauss AD (2003) Heat transfer handbook. Published by John Wiley & Sons, Inc., Hoboken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chatterjee.

Ethics declarations

Completing interests

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, M., Mukhopadhyay, S. & Vijayan, P.K. Species separation in Ranque-Hilsch vortex tube using air as working fluid. Heat Mass Transfer 54, 3559–3572 (2018). https://doi.org/10.1007/s00231-018-2386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2386-3

Navigation