Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Original methodology and nomography tool for dimensioning multi-packed-bed dehumidifiers

  • 192 Accesses


This work deals with the dimensioning of multi-packed-bed dehumidifiers used in solar air-conditioning systems. An efficient dimensioning methodology is elaborated, explained and visualized by a chart. The proposed methodology permits to ensure an appropriate packed-bed dimensioning based on a compromise between the highest possible amount of heat and mass transfer and the lowest possible level of pressure drop within a packed-bed-dehumidifier. Nomography tool is implemented in order to simplify, speed up and expand the possibilities of dimensioning. The proposed nomographs permit to determine the appropriate values of the diameter, the porosity and the height of the packed-bed. The mathematical construction techniques of all nomographs are presented in detail. Applied examples are carried out in order to show the effectiveness of each nomograph.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


C pa :

Air specific heat, (J.kg−1.K−1)

C ps :

Deicccant specific heat, (J.kg−1.K−1)

C pv :

Water vapor specific heat, (J.kg−1.K−1)

C pw :

Water specific heat, (J.kg−1.K−1)

D :

Bed diameter, (m)

D 0 :

Water vapor diffusivity, (m2.s−1)

D e :

Effective diffusivity, (m2.s−1)

d p :

Desiccant particle diameter, (m)

E 0 :

Activation energy, (J.mol−1)

H :

Bed height, (m)

N :

Number of beds constituting the dehumidifier system, (.)

q :

Desiccant moisture content (kg[H2O].kg−1[dry desiccant])

q :

Equilibrium desiccant moisture content (kg[H2O].kg−1[dry desiccant])

R :

Perfect gas constant, (J.mol−1.K−1)

T inlet :

Inlet air temperature, (°C)

V :

Air velocity, (m/s)

VR :

Ventilation rate, (m3/s)

ΔH ads :

Latent heat of evaporation (J.kg−1)

ΔP a :

Maximum allowable pressure drop, (Pa)

ε :

Bed porosity, (.)

λ a :

Air thermal conductivity, (W.m−1.K−1)

λ s :

Desiccant thermal conductivity, (W.m−1.K−1)

μa :

Air dynamic viscosity, (Pa.s)

ρ a :

Air density, (kg.m−3)

ρ s :

Desiccant density, (kg.m−3)

Ø :

Air relative humidity, (%)

ω :

Air humidity ratio, (kg[water vapor].kg−1[dry air])

δ 1, δ 3, μ 1, μ 3 :

Functional Moduli (scale factors)


  1. 1.

    Harriman LG (2002) Dehumidification handbook. Munters Corporation, Amesbury

  2. 2.

    Holcomb F, Sohn C, Torrey M, Westerman J (2000) Desiccant cooling technology-resource guide. U.S. Army Construction Engineering Research Laboratory

  3. 3.

    Misha S, Mat S, Ruslan MH, Sopian K (2012) Review of solid/liquid desiccant in the drying applications and its regeneration methods. Renew Sust Energ Rev 16(7):4686–4707. https://doi.org/10.1016/j.rser.2012.04.041

  4. 4.

    Zheng X, Ge TS, Wang RZ (2014) Recent progress on desiccant materials for solid desiccant cooling systems. Energy 74:280–294. https://doi.org/10.1016/j.energy.2014.07.027

  5. 5.

    Critenden B, Thomas WJ (1998) Adsorption technology and design. Butterworth-Heinemann, Oxford

  6. 6.

    Ruthven DM (2006) Fundamentals of adsorption equilibrium and kinetics in microporous solids. Molecular Sieves 7:1–43. https://doi.org/10.1007/3829_007

  7. 7.

    Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

  8. 8.

    Nciri R, Ali C, Ben Bacha H (2013) Design and analysis of an original multi-bed dehumidifier used for air-conditioning prototype powered by solar energy. HVAC&R Res 19(6):732–743. https://doi.org/10.1080/10789669.2013.806174

  9. 9.

    Rebughini S, Cuoci A, Maestri M (2016) Hierarchical analysis of the gas-to-particle heat and mass transfer in micro packed bed reactors. Chem Eng J 289:471–478. https://doi.org/10.1016/j.cej.2015.12.089

  10. 10.

    Lee CJ, Chou SM, Shuh SS (2011) Improved heat transfer in packed-beds. J Chin Inst Eng 3(2):133–137. https://doi.org/10.1080/02533839.1980.9676658

  11. 11.

    Prudnikov NA, Brich MA, Raptunovich YS (1990) Numerical modeling of heat and mass transfer during the drying of granulated polymers in a packed bed. J Eng Phys 59(6):1591–1596. https://doi.org/10.1007/BF00870421

  12. 12.

    Cresswell DL (1986) Heat transfer in packed bed reactors. Chem React Desi Technol 110:687–728. https://doi.org/10.1007/978-94-009-4400-8_17

  13. 13.

    Dekhtyar RA, Sikovsky DP, Gorine AV, Mukhin VA (2002) Heat transfer in a packed bed at moderate values of the Reynolds number. High Temp 40(5):693–700. https://doi.org/10.1023/A:1020432619305

  14. 14.

    Yang J, Bu S, Dong Q, Wu J, Wang Q (2015) Experimental study of flow transitions in random packed beds with low tube to particle diameter ratios. Exp Thermal Fluid Sci 66:117–126. https://doi.org/10.1016/j.expthermflusci.2015.03.018

  15. 15.

    Sobti A, Wanchoo RK (2015) Creeping flow of viscoelastic fluid through a packed bed: effect of particle shape and porosity. Part Sci Technol 33(5):463–471. https://doi.org/10.1080/02726351.2015.1010759

  16. 16.

    Chukin VV, Kuznetsov RF (1967) Gas distribution in a packed bed. J Eng Phys 13(1):45–48. https://doi.org/10.1007/BF00831750

  17. 17.

    Herrmann S, Kretzschmar HJ, Gatley DP (2011) Thermodynamic properties of real moist air, dry air, steam, water, and ice (RP-1485). HVAC&R Research 15(5):961–986. https://doi.org/10.1080/10789669.2009.10390874

  18. 18.

    Jarzebski AB, Mrowiec-Bialon J (2015) Silica gel-based composite adsorbents. In: Somasundaran P (ed) Encyclopedia of surface and colloid science, 3rd edn. CRC Press, Boca Raton, pp 6593–6606

  19. 19.

    Rahimi A, Babakhani D (2013) Mathematical modeling of a packed-bed air dehumidifier: the impact of empirical correlations. J Pet Sci Eng 108:222–229. https://doi.org/10.1016/j.petrol.2013.03.031

  20. 20.

    Ertas A, Gandhidasan P, Kiris I, Andersonn EE, Dolan M (1997) Experimental investigations on the performance of a packed bed dehumidifier for various climatic conditions. Dry Technol 15(3–4):1061–1075. https://doi.org/10.1080/07373939708917277

  21. 21.

    Nevins RG, McNall PE Jr (1973) ASHRAE thermal comfort standards. Build Res Pract 1(2):100–104. https://doi.org/10.1080/09613217308550225

  22. 22.

    Yi X, Xu B, Feng X (2013) Influence of indoor air environment on human dynamic thermal comfort. In: Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning, vol 261. p 507–513. https://doi.org/10.1007/978-3-642-39584-0_57

  23. 23.

    Forgiarini Rupp R, Giraldo Vásquez N, Lamberts R (2015) A review of human thermal comfort in the built environment. Energ Buildings 105:178–205. https://doi.org/10.1016/j.enbuild.2015.07.047

  24. 24.

    Vafai K (2015) Handbook of porous media. CRC Press, Boca Raton

  25. 25.

    Evesham HA (1982) The history and development of Nomography. Docent Press, Boston

  26. 26.

    Kerimov MK (1977) Osnovy nomografii (the principles of nomography): Khovanskii GS 352p. “Nauka”. USSR Comput Math Math Phys 17(6):267–268. https://doi.org/10.1016/0041-5553(77)90199-9

  27. 27.

    Doerfler R (2009) The lost art of Nomography. UMAP J 30(4):457–493

  28. 28.

    Stitou D, Crozat G (1997) Dimensioning nomograms for the design of fixed-bed solid-gas thermochemical reactors with various geometrical configurations. Chem Eng Process 36:45–58. https://doi.org/10.1016/S0255-2701(96)04172-4

  29. 29.

    Rabhi K, Ali C, Nciri R, Ben Bacha H (2015) Novel design and simulation of a solar air-conditioning system with desiccant dehumidification and adsorption refrigeration. Arab J Sci Eng 40(12):3379–3391. https://doi.org/10.1007/s13369-015-1839-y

  30. 30.

    Sakoda A, Suzuki M (1984) Fundamental study on solar powered adsorption cooling system. J Chem Eng Japan 17(1):52–57. https://doi.org/10.1252/jcej.17.52

  31. 31.

    Kadoma A, Hirayama T, Goto M, Hirose T, Critoph RE (2001) The use of psychrometric charts for the optimisation of a thermal swing desiccant wheel. Appl Therm Eng 21:1657–1674. https://doi.org/10.1016/S1359-4311(01)00032-1

  32. 32.

    American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) (2003) Ventilation for acceptable indoor air quality. Addendum n to ANSI/ASHRAE STANDARD 62–2001. ASHARE Handbook Fundamentals, Atlanta

  33. 33.

    American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) (2004) Thermal environmental conditions for human occupancy. ANSI/ASHRAE STANDARD 55–2004. ASHARE Handbook Fundamentals, Atlanta

  34. 34.

    Ribeiro AM, Neto P, Pinho C (2010) Mean porosity and pressure drop measurements in packed beds of Monosized spheres: Side Wall effects. Int Rev Chem Eng 2(1):40–46

  35. 35.

    Benyahia F, O’Neill KE (2005) Enhanced Voidage correlations for packed beds of various particle shapes and sizes. Part Sci Technol 23:169–177. https://doi.org/10.1080/02726350590922242

  36. 36.

    Choi YS, Kim SJ, Kim D (2008) A semi-empirical correlation for pressure drop in packed beds of spherical particles. Transp Porous Media 75(2):133–149. https://doi.org/10.1007/s11242-008-9215-y

  37. 37.

    Mehrabian MA (2007) Heat transfer and pressure drop characteristics of cross flow of air over a circular tube in isolation and/or in a tube Bank. Arab J Sci Eng 32(2B):365–376

  38. 38.

    Kozeny J (1927) Über Kapillare Leitung des Wassers im Boden. Sitzungsber Akad Wiss Vienna Austria 136(2a):271–306

  39. 39.

    Carman PC (1937) Fluid flow through granular beds. Chem Eng Res Des 75:S32–S48. https://doi.org/10.1016/S0263-8762(97)80003-2

  40. 40.

    Carman PC (1956) Flow of gases through porous media. Academic Press, New York

  41. 41.

    Kyaw T, Bidyut BS, Anutosh C, Won GC, Kim CN (2011) Study on an advanced adsorption desalination cycle with evaporator–condenser heat recovery circuit. Int J Heat Mass Transf 54(1–3):43–51. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.065

  42. 42.

    Ben Amar N, Sun LM, Meunier F (1996) Numerical analysis of adsorptive temperature wave regenerative heat pump. Appl Therm Eng 16(5):405–418. https://doi.org/10.1016/1359-4311(95)00045-3

  43. 43.

    Hensen JLM, Lamberts R (2011) Building performance simulation for design and operation. 1st edition. Spon Press, London

  44. 44.

    David AJ (2011) Designing for comfort: selecting air distribution outlets. ASHRAE Journal 53(9):38–46

Download references


We are grateful to the Higher Institute of Technological Studies of Gafsa-Tunisia and the Faculty of Sciences of Gafsa-Tunisia for their moral support.

Author information

Correspondence to Rached Nciri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nciri, R., Rabhi, K., Nasri, F. et al. Original methodology and nomography tool for dimensioning multi-packed-bed dehumidifiers. Heat Mass Transfer 54, 2661–2673 (2018). https://doi.org/10.1007/s00231-018-2298-2

Download citation