Skip to main content
Log in

Experimental investigation of heat transfer and fluid flow behaviour in multiple square perforated twisted tape with square wing inserts heat exchanger tube

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present work deals with experimental investigation of heat transfer and fluid flow characteristics of multiple square perforated twisted tape with wing inserts in a heat exchanger tube. The range of selected geometrical parameters are, perforation width ratio (a/WT) of 0.083–0.333, twist ratio (TL/WT) of 2.0–3.5, wing depth ratio (Wd/WT) of 0.042–0.167 and number of twisted tapes (TP) of 4. The Reynolds number (Ren) selected for experimentation ranges from 5000 to 27,000. The maximum heat transfer and friction factor enhancement was found to be 6.96 and 8.34 times that of plane tube, respectively. The maximum heat transfer enhancement is observed at a a/WT of 0.250, TL/WT of 2.5, and Wd/WT of 0.167.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

a :

Perforated width, m.

a/W T :

Perforation width ratio, dimensionless

A o :

Area of orifice plate, m2

A p :

Area of pipe, m2

C p :

Specific heat, J/kg K

C d :

Coefficient of discharge, dimensionless

D :

Hydraulic diameter of pipe, m

f rs :

Friction factor rough surface, dimensionless

f ss :

Friction factor plain tube, dimensionless

H :

Head difference, m

h :

Heat transfer coefficient, W/m2 K

k :

Thermal conductivity of air, W/m K

L :

Tube length, m

\( \dot{m} \) :

Mass flow rate, kg/s

Nu rs :

Nusselt number rough tube, dimensionless

Nu ss :

Nusselt number plain tube, dimensionless

(∆P) o :

Pressure drop across orifice plate, Pa

(∆P) d :

Pressure drop according to Darcy’s equation, Pa

P :

Pressure drop, Pa

Pr :

Prandtl number, dimensionless

Q u :

Useful heat transfer, W

Re n :

Reynolds number, dimensionless

T pm :

Mean pipe temperature, K

T fm :

Mean fluid temperature, K

T i :

Inlet temperature, K

T o :

Outlet temperature, K

T L :

Twist length, m

T L /W T :

Twist ratio, dimensionless

V :

Air flow velocity, m/s

W T :

Width of tape, m

W d :

Wing depth, m

W d /W T :

Wing depth ratio, dimensionless

PCR :

Perforated conical ring

WPT :

Winglet perforated tapes

β :

Orifice diameter to the pipe diameter ratio, dimensionless

ρ :

Density, kg/m3

η :

Performance evaluation factor, dimensionless

References

  1. Kumar R, Chauhan R, Muneesh S, Kumar A (2017) Experimental study and correlation development for Nusselt number and friction factor for discretized broken V-pattern baffle solar air channel. Exp Thermal Fluid Sci 81:56–75

    Article  Google Scholar 

  2. Kumar A, Kim MH (2016) Thermal hydraulic performance in a solar air heater channel with multi v-type perforated baffles. Energies 9:564

    Article  Google Scholar 

  3. Kumar A, Kim MH (2015) Mathematical simulation on thermal performance of packed bed solar energy storage system. Trans of the Korean Hydrogen and New Energy Societyvol 81:331–338

    Article  Google Scholar 

  4. Eiamsa-ard S, Nuntadusit C, Promvonge P (2013) Effect of Twin Delta-Winged Twisted-Tape on Thermal Performance of Heat Exchanger Tube. Heat Transfer. Engineering 34:1278–1288

    Google Scholar 

  5. Murugesan P, Mayilsamy K, Suresh S (2011) Heat Transfer in Tubes Fitted with Trapezoidal-Cut and Plain Twisted Tape Inserts. Chem Eng Commun 198:886–904

    Article  Google Scholar 

  6. Eiamsa-ard S, Thianpong C, Eiamsa-ard P, Promvonge P (2010) Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem. International Communications in Heat and Mass Transfer 37:39–46

    Article  MATH  Google Scholar 

  7. Eiamsa-ard S, Thianpong C, Promvonge P (2006) Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements. International Communications in Heat and Mass Transfer 33:1225–1233

    Article  Google Scholar 

  8. Sarada SN, Raju ASR, Radha KK, Sunder LS (2010) Enhancement of heat transfer using varying width twisted tape inserts. Int J Eng Sci Technol 2:45–56

    Google Scholar 

  9. Eiamsa-ard S (2010) Study on thermal and fluid flow characteristics in turbulent channel flows with multiple twisted tape vortex generators. International Communications in Heat and Mass Transfer 37:644–651

    Article  Google Scholar 

  10. Eiamsa-ard S, Nanan K, Wongcharee K, Yongsiri K, Thianpong C (2014) Thermohydraulic Performance of Heat Exchanger Tube Equipped with Single-, Double-, and Triple-Helical Twisted Tapes. Chem Eng Commun 202:606–615

    Article  Google Scholar 

  11. Vashistha C, Patil AK, Kumar M (2016) Experimental investigation of heat transfer and pressure drop in a circular tube with multiple inserts. Appl Therm Eng 96:117–129

    Article  Google Scholar 

  12. Thianpong C, Eiamsa-ard P, Eiamsa-ard S (2011) Heat transfer and thermal performance characteristics of heat exchanger tube fitted with perforated twisted-tapes. Heat Mass Transf 48:881–892

    Article  Google Scholar 

  13. Gunes S, Karakaya E (2015) Thermal Characteristics in a Tube With Loose-Fit Perforated Twisted Tapes. Heat Transfer. Engineering 36:1504–1517

    Google Scholar 

  14. Shabanian SR, Rahimi M, Shahhosseini M, Alsairafi AA (2011) CFD and experimental studies on heat transfer enhancement in an air cooler equipped with different tube inserts. International Communications in Heat and Mass Transfer 38:383–390

    Article  Google Scholar 

  15. Eiamsa-ard S, Promvonge P (2010) Thermal characteristics in round tube fitted with serrated twisted tape. Appl Therm Eng 30:1673–1682

    Article  Google Scholar 

  16. Kongkaitpaiboon V, Nanan K, Eiamsa-ard S (2010) Experimental investigation of heat transfer and turbulent flow friction in a tube fitted with perforated conical-rings. International Communications in Heat and Mass Transfer 37:560–567

    Article  Google Scholar 

  17. Wen TJ, Anthony MJ, Ya LH, Wen QT (2015) Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow. Int J Heat Mass Transf 88:735–754

    Article  Google Scholar 

  18. Wen TJ, Anthony MJ, Ya LH, Wen QT (2017) Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow. Int J Heat Mass Transf 111:467–483

    Article  Google Scholar 

  19. Thianpong C, Eiamsa-ard P, Promvonge P, Eiamsa-ard S (2012) Effect of perforated twisted-tapes with parallel wings on heat tansfer enhancement in a heat exchanger tube. Energy Procedia 14:1117–1123

    Article  Google Scholar 

  20. Nanan K, Thianpong C, Promvonge P, Eiamsa-ard S (2014) Investigation of heat transfer enhancement by perforated helical twisted-tapes. International Communications in Heat and Mass Transfer 52:106–112

    Article  Google Scholar 

  21. Guo J, Fan A, Zhang X, Liu W (2011) A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape. Int J Therm Sci 50:1263–1270

    Article  Google Scholar 

  22. Skullong S, Promvonge P, Thianpong C, Pimsarn M (2016) Heat transfer and turbulent flow friction in a round tube with staggered-winglet perforated-tapes. Int J Heat Mass Transf 95:230–242

    Article  Google Scholar 

  23. Manglik RM, Bergles AE (1992) Heat transfer enhancement and pressure drop in viscous liquid flows in isothermal tubes with twisted tape inserts. Warme und Stoffubertragung 27:249–257

    Article  Google Scholar 

  24. Manglik R. M, Bergles A. E (1993a) Heat transfer and pressure drop correlations for twisted tape inserts in isothermal tubes part1-laminar flows. J Heat Transf, 115: 881-889

  25. Manglik RM, Bergles AE (1993b) Heat transfer and pressure drop correlations for twisted tape inserts in isothermal tubes part II-Transition and turbulent flows. J Heat Transf 115:890–896

    Article  Google Scholar 

  26. Sivashanmugam P, Suresh S (2006) Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with helical screw-tape inserts. Appl Therm Eng 26:1990–1997

    Article  Google Scholar 

  27. Sivashanmugam P, Nagarajan PK (2007) Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right and left helical screw-tape inserts. Exp Thermal Fluid Sci 32:192–197

    Article  Google Scholar 

  28. Chang SW, Yang TL, Liou JS (2007) Heat transfer and pressure drop in tube with broken twisted tape insert. Exp Thermal Fluid Sci 32:489–501

    Article  Google Scholar 

  29. Ahamed JU, Wazed MA, Ahmed S, Nukman YT, Ya TMYST, Sarkar MAR (2011) Enhancement and prediction of heat transfer rate in turbulent flow through tube with perforated twisted tape inserts: A new correlation. J Heat Transf 133:041903–041903

    Article  Google Scholar 

  30. Murugesan P, Mayilsamy K, Suresh S, Srinivasan PSS (2011) Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert. International Communications in Heat and Mass Transfer 38:329–334

    Article  Google Scholar 

  31. Sharma PK, Suramanyam T, Kishore PS, Dharma Rao V, Kakac S (2003) Laminar convective heat transfer with twisted tape inserts in a tube. Int J Therm Sci 42:821–828

    Article  Google Scholar 

  32. Rahimi M, Shabanian SR, Alsairafi AA (2009) Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts. Chem Eng Process Process Intensif 48:762–770

    Article  Google Scholar 

  33. Saha SK, Dutta A, Dhal SK (2001) Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements. Int J Heat Mass Transf 44:4211–4223

    Article  MATH  Google Scholar 

  34. Bhuiya MMK, Azad AK, Chowdhury MSU, Saha M (2016) Heat transfer augmentation in a circular tube with perforated double counter twisted tape inserts. International Communications in Heat and Mass Transfer 74:18–26

    Article  Google Scholar 

  35. Bhuiya MMK, Chowdhury MSU, Saha M, Islam MT (2013) Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts. International Communications in Heat and Mass Transfer 46:49–57

    Article  Google Scholar 

  36. Wongcharee W, Eiamsa-ard S (2011) Heat transfer enhancement by twisted tapes with alternate-axes and triangular, rectangular and trapezoidal wings. Chem Eng Process Process Intensif 50:211–219

    Article  Google Scholar 

  37. Eiamsa-ard S, Wongcharee K, Eiamsa-ard P, Thianpong C (2010) Thermohydraulic investigation of turbulent flow through a round tube equipped with twisted tapes consisting of centre wings and alternate-axes. Exp Thermal Fluid Sci 34:1151–1161

    Article  Google Scholar 

  38. Eiamsa-ard S, Pimsarn M, Thianpong C (2015) Performance assessment in a heat exchanger tube with opposite/parallel wing twisted tapes. Advances in. Mech Eng 7:652536

    Google Scholar 

  39. Ji W-T, Jacobi AM, He Y-L, Tao W-Q (2015) Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow. Int J Heat Mass Transf 88:735–754

    Article  Google Scholar 

  40. Ji W-T, Jacobi AM, He Y-L, Tao W-Q (2017) Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow. Int J Heat Mass Transf 111:467–483

    Article  Google Scholar 

  41. Klein SJ, Mc Clintock A (1953) The description of uncertanties in a single sample experiments. Mech Eng 75:3–8

    Google Scholar 

  42. Lewis MJ (1975) Optimizing the thermohydraulic performance of rough surfaces. Int J Heat Mass Transf 18:1243–1248

    Article  Google Scholar 

  43. Webb RLand Eckert ERG (1972) Application of rough surface to heat exchanger design. International Journal Heat and Mass Transfer 15:1647–1658

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Maithani.

Appendix

Appendix

Mass flow rate:

$$ \dot{m}={C}_d{A}_o\left[\frac{2{\rho}_o{\left(\Delta P\right)}_o}{1-{\beta}^4}\right] $$
$$ \frac{\delta \dot{m}}{\dot{m}}={\left[{\left(\frac{\delta {C}_d}{C_d}\right)}^2+{\left(\frac{0.5\delta {\rho}_o}{\rho_o}\right)}^2+{\left(\frac{\delta {A}_o}{A_o}\right)}^2+{\left(\frac{\delta {\left(\Delta P\right)}_o}{{\left(\Delta P\right)}_o}\right)}^2\right]}^{0.5} $$
$$ \frac{\delta \dot{m}}{\dot{m}}={\left[\left(6.25\times {10}^{-4}\right)+\left(4.449\times {10}^{-6}\right)+\left(3.26\times {10}^{-5}\right)+\left(5.102\times {10}^{-7}\right)\right]}^{0.5} $$
$$ \dot{m}=0.0257 $$

Hence, uncertainty in mass flow rate measurement is 2.57%.

Heat gain:

$$ {Q}_u=\dot{m}{C}_p\left({T}_o-{T}_i\right)=\dot{m}{C}_p\Delta T $$
$$ \frac{\delta {Q}_u}{Q_u}={\left[{\left(\frac{\delta \dot{m}}{\dot{m}}\right)}^2+{\left(\frac{\delta {C}_p}{C_p}\right)}^2+{\left(\frac{\delta \left(\Delta T\right)}{\left(\Delta T\right)}\right)}^2\right]}^{0.5} $$
$$ \frac{\delta {Q}_u}{Q_u}={\left[{\left(\frac{\delta \dot{m}}{\dot{m}}\right)}^2+{\left(\frac{\delta {C}_p}{C_p}\right)}^2+{\left(\frac{\delta \left(\Delta T\right)}{\left(\Delta T\right)}\right)}^2\right]}^{0.5} $$
$$ \frac{\delta {Q}_u}{Q_u}={\left[\left(6.7081\times {10}^{-4}\right)+\left(9.9007\times {10}^{-9}\right)+\left(1.13\times {10}^{-4}\right)\right]}^{0.5} $$
$$ \frac{\delta {Q}_u}{Q_u}=0.0277 $$

Hence, uncertainty in heat gain is 2.77%.

Heat transfer coefficient:

$$ h=\frac{Q_u}{A_p\left({T}_{pm}-{T}_{fm}\right)}=\frac{Q_u}{A_p\left(\Delta {T}_{fm}\right)} $$
$$ \frac{\delta h}{h}={\left[{\left(\frac{\delta {Q}_u}{Q_u}\right)}^2+{\left(\frac{\delta {A}_p}{A_p}\right)}^2+{\left(\frac{\delta \left(\Delta {T}_{fm}\right)}{\left(\Delta {T}_{fm}\right)}\right)}^2\right]}^{0.5} $$
$$ \frac{\delta h}{h}={\left[\left(7.784\times {10}^{-4}\right)+\left(2.166\times {10}^{-6}\right)+\left(2.764\times {10}^{-5}\right)\right]}^{0.5} $$
$$ \frac{\delta h}{h}=0.284 $$

Hence, uncertainty in heat transfer coefficient is 2.84%.

Reynolds number:

$$ \mathit{\operatorname{Re}}=\frac{\rho VD}{\mu } $$
$$ \frac{\delta Re}{\mathit{\operatorname{Re}}}={\left[{\left(\frac{\delta \rho}{\rho}\right)}^2+{\left(\frac{\delta V}{V}\right)}^2+\left(\frac{\delta D}{D}\right){+}^2{\left(\frac{\delta \mu}{\mu}\right)}^2\right]}^{0.5} $$
$$ \frac{\delta Re}{\mathit{\operatorname{Re}}}={\left[\left(6.66\times {10}^{-7}\right)+\left(1.5129\times {10}^{-4}\right)+\left(8.76\times {10}^{-7}\right)+\left(2.543\times {10}^{-7}\right)\right]}^{0.5} $$
$$ \frac{\delta Re}{\mathit{\operatorname{Re}}}=0.01237 $$

Hence, uncertainty Reynolds Number is 1.23%.

Nusselt number:

$$ {Nu}_{rs}=\frac{hD}{K} $$
$$ \frac{\delta {Nu}_{rs}}{Nu_{rs}}={\left[{\left(\frac{\delta h}{h}\right)}^2+{\left(\frac{\delta D}{D}\right)}^2+{\left(\frac{\delta K}{K}\right)}^2\right]}^{0.5} $$
$$ \frac{\delta {Nu}_{rs}}{Nu_{rs}}={\left[{(0.0284)}^2+{(0.000936)}^2+{\left(4.16\times {10}^{-4}\right)}^2\right]}^{0.5} $$
$$ \frac{\delta {Nu}_{rs}}{Nu_{rs}}=0.02841 $$

Hence, uncertainty Nusselt Number is 2.84%.

Friction factor

$$ {f}_{rs}=\frac{2{\left({\Delta }_p\right)}_dD}{4\rho L{V}^2} $$
$$ \frac{\delta {f}_{rs}}{f_{rs}}={\left[{\left(\frac{\delta V}{V}\right)}^2+{\left(\frac{\delta \rho}{\rho}\right)}^2+{\left(\frac{\delta D}{D}\right)}^2+{\left(\frac{\delta L}{L}\right)}^2+{\left(\frac{\delta {\left({\Delta }_p\right)}_d}{{\left({\Delta }_p\right)}_d}\right)}^2\right]}^{0.5} $$
$$ \frac{\delta {f}_{rs}}{f_{rs}}={\left[{\left(\frac{0.1}{8.13}\right)}^2+{\left(\frac{0.001}{1.225}\right)}^2+{(0.000936)}^2+{\left(\frac{0.1}{1400}\right)}^2{\left(\frac{0.01}{1.94}\right)}^2\right]}^{0.5} $$
$$ \frac{\delta {f}_{rs}}{f_{rs}}=0.01339 $$

Hence, uncertainty Friction Factor is 1.33%.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suri, A.R.S., Kumar, A. & Maithani, R. Experimental investigation of heat transfer and fluid flow behaviour in multiple square perforated twisted tape with square wing inserts heat exchanger tube. Heat Mass Transfer 54, 1813–1826 (2018). https://doi.org/10.1007/s00231-018-2290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2290-x

Keywords

Navigation