Skip to main content
Log in

Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick’s equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi’s model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a 1, b 2, k, k 0, k 1, k 2, h, g :

Drying constants (s−1)

a, b, c, n :

Coefficients

b 1 :

Drying constant (s−2)

B i :

Biot number

Di :

Dincer number

D eff :

Effective moisture diffusivity (m2 s−1)

E a :

Activation energy (J kg−1)

h m :

Convective mass transfer coefficient (ms−1)

h p :

Planck’s constant (Js−1)

k b :

Boltzmann constant (JK−1)

L 0, a 0, b 0 :

Colour values of fresh samples

L i, a i , b i :

Colour values of dried samples

L :

Thickness of species (m)

l :

Half thickness of the slab (m)

MR :

Moisture ratio

M :

Moisture content at any time (kgw kgdm−1)

M e :

Equilibrium moisture content (kgw kgdm−1)

M i :

Initial moisture content (kgw kgdm−1)

MR pre,i :

ith predicted moisture ratio

MR exp,i :

ith experimental moisture ratio

\( {\overline{MR}}_{pre,i} \) :

Averaged value of the predicted moisture ratio

N :

Number of observations

R :

Universal gas constant (J mol−1 K−1)

R 2 :

Coefficient of determination

RMSE :

Root mean square error

T :

Temperature (K)

T abs :

Absolute temperature (K)

t :

Drying time (s)

u :

Drying air velocity (ms−1)

x :

Length coordinate (m)

z :

Number of constants in the model

∆G :

Gibbs free energy (Jmol−1)

ΔΕ :

Colour change

ΔH :

Enthalpy (Jmol−1)

∆S :

Entropy (Jmol−1 K−1)

χ 2 :

Reduced chi-square

References

  1. Doymaz I, Göl E (2011) Convective drying characteristics of eggplant slices. J Food Process Eng 34(4):1234–1252. https://doi.org/10.1111/j.1745-4530.2009.00426.x

    Article  Google Scholar 

  2. Motevali A, Minaei S, Khoshtagaza MH (2011) Evaluation of energy consumption in different drying methods. Energy Convers Manag 52(2):1192–1199. https://doi.org/10.1016/j.enconman.2010.09.014

    Article  Google Scholar 

  3. Jena S, Das H (2007) Modelling for vacuum drying characteristics of coconut presscake. J Food Eng 79(1):92–99. https://doi.org/10.1016/j.jfoodeng.2006.01.032

    Article  Google Scholar 

  4. Jaya S, Das H (2003) A vacuum drying model for mango pulp. Dry Technol 21(7):1215–1234. https://doi.org/10.1081/DRT-120023177

    Article  Google Scholar 

  5. Drouzas AE, Schubert H (1996) Microwave application in vacuum drying of fruits. J Food Eng 28(2):203–209. https://doi.org/10.1016/0260-8774(95)00040-2

    Article  Google Scholar 

  6. Kompany E, Benchimol J, Allaf K, Ainseb A, Bouvier JM (1993) Dehydration kinetics and modeling. Dry Technol 11(3):451–470. https://doi.org/10.1080/07373939308916838

    Article  Google Scholar 

  7. Devahastin S, Suvarnakuta P, Soponronnarit S, Mujumdar AS (2004) A comparative study of low-pressure superheated steam and vacuum drying of a heat-sensitive material. Dry Technol 22(8):1845–1867. https://doi.org/10.1081/DRT-200032818

    Article  Google Scholar 

  8. Alibas I, Köksal N (2014) Convective, vacuum and microwave drying kinetics of mallow leaves and comparison of color and ascorbic acid values of three drying methods. Food Sci Technol 34(2):358–364. https://doi.org/10.1590/S0101-20612014005000033

    Article  Google Scholar 

  9. Karasu S, Kilicli M, Baslar M, Arici SO, Karaagacli M (2015) Dehydration kinetics and changes of bioactive Compounds of tulip and poppy petals as a natural Colorant under vacuum and oven conditions. J Food Process Preserv 39(6):2096–2106. https://doi.org/10.1111/jfpp.12453

    Article  Google Scholar 

  10. Ah-Hen K, Zambra CE, Aguëro JE, Vega-Gálvez A, Lemus-Mondaca R (2013) Moisture diffusivity coefficient and convective drying modelling of Murta (Ugni molinae Turcz): influence of temperature and vacuum on drying kinetics. Food Bioprocess Technol 6(4):919–930. https://doi.org/10.1007/s11947-011-0758-5

    Article  Google Scholar 

  11. Thomkapanich O, Suvarnakuta P, Devahastin S (2007) Study of intermittent low-pressure superheated steam and vacuum drying of a heat-sensitive material. Dry Technol 25:205–223. https://doi.org/10.1080/07373930601161146

    Article  Google Scholar 

  12. Akpinar EK, Bicer Y, Yildiz C (2003) Thin layer drying of red pepper. J Food Eng 59(1):99–104. https://doi.org/10.1016/S0260-8774(02)00425-9

    Article  Google Scholar 

  13. Doymaz I, Pala M (2003) The thin-layer drying characteristics of corn. J Food Eng 60(2):125–130. https://doi.org/10.1016/S0260-8774(03)00025-6

    Article  Google Scholar 

  14. Vega-Gálvez A, Di Scala K, Rodríguez K, Lemus-Mondaca R, Miranda M, López J, Perez-Wona M (2009) Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chem 117(4):647–653. https://doi.org/10.1016/j.foodchem.2009.04.066

    Article  Google Scholar 

  15. Iglesias H, Chirife J, Viollaz P (1976) Thermodynamics of water vapor sorption by sugar beet root. T J Food Technol 11(1):91–101. https://doi.org/10.1111/j.1365-2621.1976.tb00705.x

    Article  Google Scholar 

  16. Corrêa PC, Oliveira GHH, Botelho FM, Goneli ALD, Carvalho FM (2010) Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Rev Ceres 57(5):595–601. https://doi.org/10.1590/S0034-737X2010000500005

    Article  Google Scholar 

  17. Martins EAS, Lage EZ, Goneli ALD, Hartmann Filho CP, Lopes JG (2015) Cinética de secagem de folhas de timbó (Serjania marginata Casar). Rev Bras Eng Agríc Ambient 19:238–244. https://doi.org/10.1590/1807-1929/agriambi.v19n3p238-244

    Article  Google Scholar 

  18. Goneli ALD, Vieira MC, Vilhasanti HCB, Gonçalves AA (2014) Modelagem matemática e difusividade efetiva de folhas de aroeira durante a secagem. Pesqui Agropecu Trop 44(1):56–64. https://doi.org/10.1590/S1983-40632014000100005

    Article  Google Scholar 

  19. Kaya S, Kahyaoglu T (2006) Influence of dehulling and roasting process on the thermodynamics of moisture adsorption in sesame seed. J Food Eng 76(2):139–147. https://doi.org/10.1016/j.jfoodeng.2005.04.042

    Article  Google Scholar 

  20. McMinn WAM, Magee TRA (2003) Thermodynamic properties of moisture sorption of potato. J Food Eng 60(2):155–157. https://doi.org/10.1016/S0260-8774(03)00036-0

    Article  Google Scholar 

  21. Togrul H, Arslan N (2006) Moisture sorption behaviour and thermodynamic characteristics of rice stored in a chamber under controlled humidity. Biosyst Eng 95(2):181–195. https://doi.org/10.1016/j.biosystemseng.2006.06.011

    Article  Google Scholar 

  22. Silva AN, Reis Coimbra JS, Botelho FM, Moraes MN, Faria JT, Trindade Bezerra MC, Martins MA, Siqueira AMO (2013) Pear drying: Thermodynamics studies and coefficients of convective heat and mass transfer. Int J Food Eng 9(4):365–374. https://doi.org/10.1515/ijfe-2012-0247

    Article  Google Scholar 

  23. Lopez R, de Ita A, Vaca M (2009) Drying of prickly pear cactus cladodes (Opuntia ficus indica) in a forced convection tunnel. Energy Convers Manag 50:2119–2126. https://doi.org/10.1016/j.enconman.2009.04.014

    Article  Google Scholar 

  24. O’Callaghan JR, Menzies DJ, Bailey PH (1971) Digital simulation of agricultural dryer performance. J Agric Eng Res 16(3):223–244. https://doi.org/10.1016/S0021-8634(71)80016-1

    Article  Google Scholar 

  25. Page G (1949) Factors influencing the maximum rates of air-drying shelled corn in thin layer. Dissertation, Purdue University

  26. Ozdemir M, Devres YO (1999) The thin layer drying characteristics of hazelnuts during roasting. J Food Eng 42(4):225–233. https://doi.org/10.1016/S0260-8774(99)00126-0

    Article  Google Scholar 

  27. Henderson SM, Pabis S (1961) Grain drying theory. II. Temperature effects on drying coefficients. J Agric Eng Res 6:169–174

    Google Scholar 

  28. Diamante LM, Munro PA (1991) Mathematical modelling of hot air drying of sweet potato slices. Int J Food Sci Technol 26(1):99–101

    Article  Google Scholar 

  29. Henderson SM (1974) Progress in developing the thin-layer drying equation. Trans ASAE 17(6):1167–1168. https://doi.org/10.13031/2013.37052

    Article  Google Scholar 

  30. Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY (1980) A model for ear corn drying. Trans ASAE 23(5):1261–1265. https://doi.org/10.13031/2013.34757

    Article  Google Scholar 

  31. Wang CY, Singh RP (1978) A single layer drying equation for rough rice. Trans ASAE 78:3001

    Google Scholar 

  32. Yaldiz O, Ertekin C (2001) Thin layer solar drying of some vegetables. Dry Technol 19(3-4):583–596. https://doi.org/10.1081/DRT-100103936

    Article  Google Scholar 

  33. Karathanos VT (1999) Determination of water content of dried fruits by drying kinetics. J Food Eng 39(4):337–344. https://doi.org/10.1016/S0260-8774(98)00132-0

    Article  Google Scholar 

  34. Midilli A, Kucuk H, Yapar Z (2002) A new model for single layer drying. Dry Technol 20(7):1503–1513. https://doi.org/10.1081/DRT-120005864

    Article  Google Scholar 

  35. Nadi F (2016) Development of a new model for mass transfer kinetic of petals of Echium Amoenum Fisch & Mey under fluidized bed conditions. Food Technol Biotechnol 54(2):217–227. https://doi.org/10.17113/ftb.54.02.16.4304

    Article  Google Scholar 

  36. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  37. Keey RB (1972) Drying - principles and practice. Pergamon Press, New York

    Google Scholar 

  38. Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: property data and representative results. J Food Eng 80(1):96–110. https://doi.org/10.1016/j.jfoodeng.2006.05.012

    Article  Google Scholar 

  39. Crank J (1975) Mathematics of diffusion. Oxford University Press, London

    MATH  Google Scholar 

  40. Tripathy PP, Kumar S (2009) A methodology for determination of temperature dependent mass transfer coefficients from drying kinetics: application to solar drying. J Food Eng 90(2):212–218

    Article  Google Scholar 

  41. Lahsasni S, Kouhila M, Mahrouz M, Jaouhari JT (2004) Drying kinetics of prickly pear fruit (Opuntia ficus indica). J Food Eng 61(2):173–179. https://doi.org/10.1016/S0260-8774(03)00084-0

    Article  Google Scholar 

  42. Dincer I, Hussain MM (2002) Development of a new Bi-Di correlation for solids drying. Int J Heat Mass Transf 45(15):3065–3069. https://doi.org/10.1016/S0017-9310(02)00031-5

    Article  MATH  Google Scholar 

  43. Jurendić T, Tripalo B (2011) Biot number-lag factor (Bi-G) correlation for tunnel drying of baby food. Afr J Biotechnol 10(59):12676–12683. https://doi.org/10.5897/AJB11.112

  44. Dincer I, Hussain MM, Sahin AZ, Yilbas BS (2002) Development of a new moisture transfer (Bi–Re) correlation for food drying applications. Int J Heat Mass Transf 45(8):1749–1755. https://doi.org/10.1016/S0017-9310(01)00272-1

    Article  MATH  Google Scholar 

  45. Marinos-Kouris D, Maroulis ZB (1995) Transport properties in the drying of solids. In: Mujumdar AS (ed) Handbook of industrial drying, 2nd edn. Marcel Dekker Inc., New York, pp 113–160

    Google Scholar 

  46. Farid MM (2010) Mathematical modeling of food processing. CRC Press, Boca Raton

    Book  Google Scholar 

  47. Nadi F (2011) Simulation of apple slab drying under vacuum using finite element method. Dissertation, Tarbiat Modares University

  48. Wu L, Orikasa T, Ogawa Y, Tagawa A (2007) Vacuum drying characteristics of eggplants. J Food Eng 83(3):422–429. https://doi.org/10.1016/j.jfoodeng.2007.03.030

    Article  Google Scholar 

  49. Santo EFE, Lima LKF, Torres APCT, Ponsano EHG (2013) Comparison between freeze and spray drying to obtain powder Rubrivivax gelatinosus biomass. Food Sci Technol (Campinas) 33(1):47–51. https://doi.org/10.1590/S0101-20612013005000008

    Article  Google Scholar 

  50. Vega-Gálvez A, Ah-Hen K, Chacana M, Vergara J, Martínez-Monzó J, García-Segovia P, Lemus-Mondaca R, Di Scala K (2012) Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem 132(1):51–59. https://doi.org/10.1016/j.foodchem.2011.10.029

    Article  Google Scholar 

  51. Ozilgen M, Giiveng G, Makaracl M, Tiimer I (1995) Colour change and weight loss of apple slices during drying. Z Lebensm Unters Forsch 201(1):40–45. https://doi.org/10.1007/BF01193199

    Article  Google Scholar 

  52. Cruz AC, Guiné RPF, Gonçalves AJC (2015) Drying kinetics and product quality for convective drying of apples (cvs. Golden Delicious and Granny Smith). Int J Fruit Sci 15(1):54–78. https://doi.org/10.1080/15538362.2014.931166

    Article  Google Scholar 

  53. Akgun NA, Doymaz I (2005) Modelling of olive cake thin-layer drying process. J Food Eng 68(4):455–461. https://doi.org/10.1016/j.jfoodeng.2004.06.023

    Article  Google Scholar 

  54. Guiné RPF, Cruz AC, Mendes M (2014) Convective drying of apples: kinetic study, evaluation of mass transfer properties and data analysis using artificial neural networks. Int J Food Eng 10(2):281–299. https://doi.org/10.1515/ijfe-2012-0135

    Article  Google Scholar 

  55. Chen F, Zhang M, Mujumdar AS, Jiang H, Wang L (2014) Production of crispy granules of fish: a comparative study of alternate drying techniques. Dry Technol 32(12):1512–1521. https://doi.org/10.1080/07373937.2014.903410

    Article  Google Scholar 

  56. Pere C, Rodier E (2002) Microwave vacuum drying of porous media: experimental study and qualitative considerations of internal transfers. Chem Eng Process 41(5):427–436. https://doi.org/10.1016/S0255-2701(01)00161-1

    Article  Google Scholar 

  57. Kaleemullah S, Kailappan R (2007) Monolayer moisture, free energy change and fractionation of bound water of red chillies. J Stored Prod Res 43(2):104–110. https://doi.org/10.1016/j.jspr.2005.12.001

    Article  Google Scholar 

  58. Goyal RK, Kingsley ARP, Manikantan MR, Ilyas SM (2006) Thin-layer drying kinetics of raw mango slice. Biosyst Eng 95(1):43–49. https://doi.org/10.1016/j.biosystemseng.2006.05.001

    Article  Google Scholar 

  59. Akpinar EK (2006) Determination of suitable thin layer drying curve model for some vegetables and fruits. J Food Eng 73(1):75–84. https://doi.org/10.1016/j.jfoodeng.2005.01.007

    Article  Google Scholar 

  60. Akanbi CT, Adeyemi RS, Ojo A (2006) Drying characteristics and sorption isotherm of tomato slices. J Food Eng 73(2):157–163. https://doi.org/10.1016/j.jfoodeng.2005.01.015

    Article  Google Scholar 

  61. Doymaz I (2007) Air-drying characteristics of tomatoes. J Food Eng 78(4):1291–1297. https://doi.org/10.1016/j.jfoodeng.2005.12.047

    Article  Google Scholar 

  62. Arévalo-Pinedo A, Murr FEX, Arévalo ZDS, Giraldo-Zuñiga AD (2010) Modeling with shrinkage during the vacuum drying of carrot (Daucus carota). J Food Process Preserv 34:611–621. https://doi.org/10.1111/j.1745-4549.2009.00420.x

    Article  Google Scholar 

  63. Resende O, Ferreira LU, Almeida DP (2012) Modelagem matemática para descrição da cinética de secagem do feijão azuki (Vigna angularis). Rev Bras Prod Agro 12:171–178. https://doi.org/10.15871/1517-8595/rbpa.v12n2p171-178

    Google Scholar 

  64. Zogzas NP, Maroulis ZB, Marinos-Kouris D (1996) Moisture diffusivity data compilation in foodstuffs. DryTech 14(10):2225–2253. https://doi.org/10.1080/07373939608917205

    Google Scholar 

  65. Oliveira GHH, Corrêa PC, Araújo EF, Valente DSM, Botelho FM (2010) Desorption isotherms and thermodynamic properties of sweet corn cultivars (Zea mays L.) Int J Food Sci Technol 45(3):546–554. https://doi.org/10.1111/j.1365-2621.2009.02163

    Article  Google Scholar 

  66. Afolabi IS (2014) Moisture migration and bulk nutrients interaction in a drying food systems: a review. Food Nutr Sci 5:692–714. https://doi.org/10.4236/fns.2014.58080

    Google Scholar 

  67. Goneli ALD, Corrêa PC, Oliveira GHH, Botelho FM (2010) Water desorption and thermodynamic properties of okra seeds. Trans ASAE 53(1):191–197. https://doi.org/10.13031/2013.29486

    Article  Google Scholar 

  68. Oliveira D, Resende O, Bessa J, Kester A, Smaniotto T (2014) Mathematical modeling and thermodynamic properties for drying soybean grains. Afr J Agr Res 10(1):31–38. https://doi.org/10.5897/AJAR2014.8711

    Google Scholar 

  69. Dannenberg F, Kessler H (1988) Reaction kinetics of the denaturation of whey proteins in milk. J Food Sci 53(1):258–263. https://doi.org/10.1111/j.1365-2621.1988.tb10223.x

    Article  Google Scholar 

  70. Corrêa PC, Botelho FM, Oliveira GHH, Goneli ALD, Resende O, Campos SC (2011) Mathematical modeling of the drying process of corn ears. Acta Sci-Agron 33(4):575–581. https://doi.org/10.4025/actasciagron.v33i4.7079

    Article  Google Scholar 

  71. Bayram M, Kaya A, Öner MD (2004) Changes in properties of soaking water during production of soy-bulgur. J Food Eng 61(2):221–230. https://doi.org/10.1016/S0260-8774(03)00094-3

    Article  Google Scholar 

  72. Jideani VA, Mpotokwana ASM (2009) Modeling of water absorption of Botswanabambara varieties using Peleg’s equation. J Food Eng 92(2):182–188. https://doi.org/10.1016/j.jfoodeng.2008.10.040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Nadi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadi, F., Tzempelikos, D. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters. Heat Mass Transfer 54, 1853–1866 (2018). https://doi.org/10.1007/s00231-018-2279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2279-5

Navigation