Skip to main content

Advertisement

Log in

Improving the performance of a passive battery thermal management system based on PCM using lateral fins

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Phase-change materials (PCMs) combine the latent and sensible heat adsorption capabilities which makes them promising candidates in a wide range of heat transfer applications such as battery thermal management systems (BTMSs) in hybrid electric vehicles (HEVs), battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs). PCM must preserve the battery cells in the desired temperature range. However, pure PCMs face some challenges due to their low thermal conductivities. To mitigate this issue, one possible solution is employing fins to enhance the heat transfer across the PCM. Since the PCM melting is affected by buoyancy forces, alignment of employed fins may have an essential role in the performance of BTMSs. In the current investigation, six different BTMSs using PCM with dissimilar fin alignments are simulated and evaluated. The time evolution of liquid fraction contours are depicted for simulated cases. The results indicate that the BTMS employing horizontal fins provides the best cooling effect with the largest melt fraction after a prescribed period of time. Besides, the results demonstrate that the breaking manner of solid PCM can be greatly affected by the alignment of fins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C :

Mushy zone number in Eq. (4) (kg/(m3.s))

g :

Gravitational acceleration (m/s2)

G b :

Turbulence kinetic energy generation by buoyancy forces (kg/(m.s3))

G k :

Turbulence kinetic energy generation caused by mean velocity gradients (kg/(m.s3))

h :

Specific enthalpy (J/kg)

k :

Thermal conductivity (W/(m.K))

L :

Latent heat for phase change material (J/kg)

\( {\dot{m}}_{pq} \) :

Mass transfer rate from phase p to phase q (kg/s)

\( {\dot{m}}_{qp} \) :

Mass transfer from phase q to phase p (kg/s)

p :

Pressure (Pa)

S :

Source term

t :

Time (s)

T :

Temperature (K)

u i :

ith component of velocity vector (m/s)

\( \overrightarrow{V} \) :

Velocity vector (m/s)

α :

Volume fraction

γ :

Liquid fraction

μ :

Dynamic viscosity (kg/(m.s))

ρ :

Density (kg/m3)

b :

Buoyancy

eff :

Effective

L :

Liquidus

ref :

Reference value

s :

Solidus / Sensible

BEV:

Battery electric vehicle

BTMS:

Battery thermal management system

CENG:

Compressed extended natural graphite

FCEV:

Fuel cell electric vehicle

HEV:

Hybrid electric vehicle

PCM:

Phase change material

RNG:

Renormalized group

VOF:

Volume of fluid

References

  1. Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M (2017) Experimental investigation and simulation of temperature distributions in a 16Ah-LiMnNiCoO2 battery during rapid discharge rates. Heat Mass Transf 53:937–946

    Article  Google Scholar 

  2. Yunyun Z, Guoqing Z, Weixiong W, Weixiong L (2014) Heat dissipation structure research for rectangle LiFePO4 power battery. Heat Mass Transf 50:887–893

    Article  Google Scholar 

  3. Ramandi MY, Dincer I, Naterer GF (2011) Heat transfer and thermal management of electric vehicle batteries with phase change materials. Heat Mass Transf 47:777–788

    Article  Google Scholar 

  4. Talati F, Mosaffa AH, Rosen MA (2011) Analytical approximation for solidification processes in PCM storage with internal fins: imposed heat flux. Heat Mass Transf und Stoffuebertragung 47:369–376

    Article  Google Scholar 

  5. Kumaresan V, Velraj R, Das SK (2012) The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification. Heat Mass Transf und Stoffuebertragung 48:1345–1355

    Article  Google Scholar 

  6. Kasibhatla RR, König-Haagen A, Rösler F, Brüggemann D (2016) Numerical modelling of melting and settling of an encapsulated PCM using variable viscosity. Heat Mass Transf und Stoffuebertragung 53:1735–1744

    Article  Google Scholar 

  7. Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Renew Sust Energ Rev 11:1913–1965

    Article  Google Scholar 

  8. Sparrow EM, Broadbent JA (1982) Inward melting in a vertical tube which allows free expansion of the phase-change medium. J Heat Transf 104:309–315

    Article  Google Scholar 

  9. Tan FL, Hosseinizadeh SF, Khodadadi JM, Fan L (2009) Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Transf 52:3464–3472

    Article  MATH  Google Scholar 

  10. Sparrow EM, Gurtcheff GA, Myrum TA (1986) Correlation of melting results for both pure substances and impure substances. J Heat Transf 108:649–653

    Article  Google Scholar 

  11. Menon AS, Weber ME, Mujumdar AS (1983) The dynamics of energy storage for paraffin wax in cylindrical containers. Can J Chem Eng 61:647–653

    Article  Google Scholar 

  12. Javani N, Dincer I, Naterer GF, Rohrauer GL (2014) Modeling of passive thermal management for electric vehicle battery packs with PCM between cells. Appl Therm Eng 73:305–314

    Article  Google Scholar 

  13. Jones BJ, Sun D, Krishnan S, Garimella SV (2006) Experimental and numerical study of melting in a cylinder. Int J Heat Mass Transf 49:2724–2738

    Article  Google Scholar 

  14. Shamsundar N, Sparrow EM (1975) Analysis of multidimensional conduction phase change via the enthalpy model. J Heat Transf 97:333

    Article  Google Scholar 

  15. Greco A, Jiang X (2016) A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite. J Power Sources 315:127–139

    Article  Google Scholar 

  16. Lin C, Xu S, Chang G, Liu J (2015) Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets. J Power Sources 275:742–749

    Article  Google Scholar 

  17. Jegadheeswaran S, Pohekar SD (2009) Performance enhancement in latent heat thermal storage system: a review. Renew Sust Energ Rev 13:2225–2244

    Article  Google Scholar 

  18. Alrashdan A, Mayyas AT, Al-Hallaj S (2010) Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of li-ion battery packs. J Mater Process Technol 210:174–179

    Article  Google Scholar 

  19. Greco A, Jiang X, Cao D (2015) An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. J Power Sources 278:50–68

    Article  Google Scholar 

  20. Choi DH, Lee J, Hong H, Kang YT (2014) Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. Int J Refrig 42:112–120

    Article  Google Scholar 

  21. Frusteri F, Leonardi V, Vasta S, Restuccia G (2005) Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Appl Therm Eng 25:1623–1633

    Article  Google Scholar 

  22. Babapoor A, Azizi M, Karimi G (2015) Thermal management of a li-ion battery using carbon fiber-PCM composites. Appl Therm Eng 82:281–290

    Article  Google Scholar 

  23. Goli P, Legedza S, Dhar A et al (2014) Graphene-enhanced hybrid phase change materials for thermal management of li-ion batteries. J Power Sources 248:37–43

    Article  Google Scholar 

  24. Warzoha RJ, Fleischer AS (2014) Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks. Int J Heat Mass Transf 79:314–323

    Article  Google Scholar 

  25. Wang Z, Zhang Z, Jia L, Yang L (2015) Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of li-ion battery. Appl Therm Eng 78:428–436

    Article  Google Scholar 

  26. Yu JS, Horibe A, Haruki N et al (2016) Melting and solidification characteristics of a mixture of two types of latent heat storage material in a vessel. Heat Mass Transf 52:2563–2574

    Article  Google Scholar 

  27. Shmueli H, Ziskind G, Letan R (2010) Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. Int J Heat Mass Transf 53:4082–4091

    Article  MATH  Google Scholar 

  28. Brent AD, Voller VR, Reid KJ (1988) Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf 13:297–318

    Article  Google Scholar 

  29. Fluent ANSYS (2015) Fluent 16.2 theory guide. Fluent Inc.

  30. Gau C, Viskanta R (1983) Flow visualization during solid-liquid phase change heat transfer I. freezing in a rectangular cavity. Int Commun Heat Mass Transf 10:173–181

    Article  Google Scholar 

  31. Cengel YA, Ghajar AJ (2015) Heat and mass transfer fundamentals and applications. McGraw-Hill Education, New York

    Google Scholar 

  32. Assis E, Katsman L, Ziskind G, Letan R (2007) Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf 50:1790–1804

    Article  MATH  Google Scholar 

  33. Katsman L (2006) Investigation of phase change in cylindrical geometry with internal fins. M.Sc. Thesis, Heat Transfer Laboratory, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Molaeimanesh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaeefard, M.H., Molaeimanesh, G.R. & Ranjbaran, Y.S. Improving the performance of a passive battery thermal management system based on PCM using lateral fins. Heat Mass Transfer 55, 1753–1767 (2019). https://doi.org/10.1007/s00231-018-02555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-02555-0

Navigation