Skip to main content
Log in

Effect of surface radiation on natural convection in an asymmetrically heated channel-chimney system

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, a more realistic numerical approach that takes into account the effect of surface radiation on the laminar air flow induced by natural convection in a channel-chimney system asymmetrically heated at uniform heat flux is used. The aim is to enrich the results given in Nasri et al. (Int J Therm Sci 90:122–134, 2015) by varying all the geometric parameters of the system and by taking into account the effect of surface radiation on the flows. The numerical results are first validated against experimental and numerical data available in the literature. The computations have allowed the determination of optimal configurations that maximize the mass flow rate and the convective heat transfer and minimize the heated wall temperatures. The analysis of the temperature fields with the streamlines and the pressure fields has helped to explain the effects of surface radiation and of the different thermo-geometrical parameters on the system performances to improve the mass flow rate and the heat transfer with respect to the simple channel. It is shown that the thermal performance of the channel-chimney system in terms of lower heated wall temperatures is little affected by the surface radiation. At the end, simple correlation equations have been proposed for quickly and easily predict the optimal configurations as well as the corresponding enhancement rates of the induced mass flow rate and the convective heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Ar :

channel aspect ratio (Ar = h/b)

b :

channel width (m)

b ' :

chimney width (m)

B :

expansion ratio (B = b '/b)

Er :

extension ratio (Er = h '/h)

g :

acceleration due to the gravity (m.s−2)

G :

dimensionless mass flow rate

h :

channel height (m)

h ' :

chimney height (m)

h c :

convective heat transfer coefficient (W.m−2.K−1)

h r :

radiative heat transfer coefficient (W.m−2.K−1)

n x , n z :

numbers of grid points in x− and z−directions

Nu c :

local convective Nusselt number

Nu r :

local radiative Nusselt number

Nu ac :

average convective Nusselt number

Nu ar :

average radiative Nusselt number

p :

pressure (Pa)

P :

dimensionless pressure

Ρr :

Prandtl number

q :

heat flux (W.m−2)

q r :

radiative heat flux (W.m−2)

Ra :

Rayleigh number

Ra :

modified Rayleigh number (Ra  = Ra/Ar)

t :

dimensionless time

t ' :

time (s)

T :

dimensionless temperature

u, w :

velocity component along (x, z)-direction (m.s−1)

U, W :

dimensionless velocity components

x, z :

cartesian coordinates (m)

X, Z :

dimensionless coordinates

α :

thermal diffusivity (m2.s−2)

β :

coefficient of volumetric expansion (K−1)

Δ:

difference between two values

ε :

emissivity

θ :

temperature (K)

υ :

kinematic viscosity (m2.s−1)

ρ :

density (Kg.m−3)

λ :

thermal conductivity (W.m−1.K−1)

0 :

ambient

a :

average

c :

convective

max:

maximum value

opt :

optimum value

r :

radiative

Sc :

Simple channel

w :

wall

References

  1. Elenbaas W (1942) Heat dissipation of parallel plates by free convection. Physica 9:1–28

    Article  MATH  Google Scholar 

  2. Yilmaz T, Gilchrist A (2007) Temperature and velocity field characteristics of turbulent natural convection in a vertical parallel-plate channel with asymmetric heating. Heat Mass Transf 43:707–719

    Article  Google Scholar 

  3. Lau GE, Yeoh GH, Timchenko V, Reizes JA (2012) Numerical investigation of passive cooling in open vertical channels. Appl Therm Eng 39:121–131

    Article  Google Scholar 

  4. Li R, Bousetta M, Chénier E, Lauriat G (2013) Effect of surface radiation on natural convective flows and onset of flow reversal in asymmetrically heated vertical channels. Int J Therm Sci 65:9–27

    Article  Google Scholar 

  5. Carpenter J, Briggs D, Sernas V (1976) Combined radiation and developing laminar free convection between vertical flat plates with asymmetric heating. J Heat Transf 98:95–100

    Article  Google Scholar 

  6. Sparrow EM, Shah S, Prakash C (1980) Natural convection in a vertical channel: I. Interacting convection and radiation. II. The vertical plate with and without shrouding. Numer Heat Trans 3:297–314

    Google Scholar 

  7. Manca O, Naso V (1990) Experimental analysis of natural convection and thermal radiation in vertical channels. ASME HTD 145:13–21

    Google Scholar 

  8. Krishnan A, Premachandran B, Balaji C, Venkateshan S (2004) Combined experimental and numerical approaches to multi-mode heat transfer between vertical parallel plates. Exp Thermal Fluid Sci 29:75–86

    Article  Google Scholar 

  9. Andreozzi A, Manca O (2001) Thermal and fluid dynamic behavior of symmetrically heated vertical channels with auxiliary plate. Int J Heat Fluid Flow 22:424–432

    Article  Google Scholar 

  10. Taieb S, Laatar AH, Balti J (2013) Natural convection in an asymmetrically heated vertical channel with an adiabatic auxiliary plate. Int J Therm Sci 74:24–36

    Article  Google Scholar 

  11. Abidi-Saad A, Kadja M, Popa C, Polidori G (2016) Effect of adiabatic square ribs on natural convection in an asymmetrically heated channel. Heat Mass Trans. https://doi.org/10.1007/s00231-016-1853-y

  12. Garnier C, Sergent A, Le Quéré P (2013) Otimization by kriging of a 2D vertical channel asymmetrically heated. 21ème Congrès Français de Mécanique, Bordeaux (in French)

  13. Haaland SE, Sparrow EM (1983) Solutions for the channel plume and the parallel-walled chimney. Numer Heat Trans 6:155–172

    MATH  Google Scholar 

  14. Auletta A, Manca O, Morrone B, Naso V (2001) Heat transfer enhancement by the chimney effect in a vertical isoflux channel. Int J Heat Mass Trans 44:4345–4357

    Article  Google Scholar 

  15. Auletta A, Manca O, Musto M, Nardini S (2003) Thermal design of symmetrically and asymmetrically heated channel-chimney systems in natural convection. Appl Therm Eng 23:605–621

    Article  Google Scholar 

  16. Auletta A, Manca O (2002) Heat and fluid flow resulting from the chimney effect in a symmetrically heated vertical channel with adiabatic extensions. Int J Therm Sci 41:1101–1111

    Article  Google Scholar 

  17. Manca O, Musto M, Naso V (2003) Experimental analysis of asymmetrical isoflux channel-chimney systems. Int J Therm Sci 42:837–846

    Article  Google Scholar 

  18. Manca O, Musto M, Naso V (2005) Experimental investigation of natural convection in an asymmetrically heated vertical channel with an asymmetric chimney. ASME J Heat Trans 127:888–896

    Article  Google Scholar 

  19. Oosthuizen PH (1984) A numerical study of laminar free convective flow through a vertical open partially heated plane duct. ASME HTD 32:41–48

    Google Scholar 

  20. Straatman AG, Tarasuk JD, Floryan JM (1993) Heat transfer enhancement from a vertical, isothermal channel generated by the chimney effect. J Heat Transf 115:395–402

    Article  Google Scholar 

  21. Andreozzi A, Buonomo B, Manca O (2009) Thermal management of a symmetrically heated channel-chimney system. Int J Therm Sci 48:475–487

    Article  Google Scholar 

  22. Andreozzi A, Buonomo B, Manca O (2010) Thermal and fluid dynamic behaviors of natural convection in symmetrical heated channel-chimney systems. Int J Numer Method Heat Fluid Flow 20:811–833

    Article  MATH  Google Scholar 

  23. Nasri Z, Laatar AH, Balti J (2015) Natural convection enhancement in an asymmetrically heated channel-chimney system. Int J Therm Sci 90:122–134

    Article  Google Scholar 

  24. Brangeon B, Joubert P, Bastide A (2015) Influence of the dynamic boundary conditions on natural convection in an asymmetrically heated channel. Int J Therm Sci 95:64–72

    Article  Google Scholar 

  25. Zamora B, Kaiser AS (2016) Radiative effects on turbulent buoyancy-driven airflow in open square cavities. Int J Therm Sci 100:267–283

    Article  Google Scholar 

  26. Safer N (2006) Modélisation des façades de type double-peau équipées de protections solaires: Approches multi-échelles. Ph.D. thesis, Institut National des Sciences Appliquées, Lyon, France

  27. Brangeon B (2012) Contribution à l'étude numérique de la ventilation naturelle dans des cavités ouvertes par la simulation des grandes échelles: Application au rafraîchissement passif des bâtiments. Ph.D. thesis, Faculté des Sciences de l'Homme et de l'Environnement, La Réunion, France

  28. Dol HS, Hanjalic K (2001) Computational study of turbulent natural convection in a side-heated near-cubic enclosure at a high Rayleigh number. Int J Heat Mass Transf 44:2323–2344

    Article  MATH  Google Scholar 

  29. Trias FX, Soria M, Pérez-Segarra CD, Oliva A (2003) DNS of natural convection in a differentially heated cavity: effects of the three-dimensional fluctuations. In: Hanjalic K, Nagano Y, Tummers M (eds) Proceedings of the international symposium on turbulence, heat mass transfer 4. Begell House Inc., pp 409–416

  30. Salat J, Xin S, Joubert P, Sergent A, Penot F, Le Quéré P (2004) Experimental and numerical investigation of turbulent natural convection in a large air-filled cavity. Int J Heat Fluid Flow 25:824–832

    Article  Google Scholar 

  31. Trias FX, Soria M, Oliva A, Pérez-Ségarra CD (2007) Direct numerical simulation of two and three-dimensional natural convection flows in a differentially heated cavity of aspect ratio 4. J Fluid Mech 586:259–293

    Article  MATH  Google Scholar 

  32. Kettleborough CF (1972) Transient laminar free convection between heated vertical plates including entrance effects. Int J Heat Mass Transf 15:883–896

    Article  MATH  Google Scholar 

  33. Kihm KD, Kim JH, Fletcher LS (1995) Onset of flow reversal and penetration length of natural convective flow between isothermal vertical walls. J Heat Transf 117:776–779

    Article  Google Scholar 

  34. Suarez C, Joubert P, Molina JL, Sanchez FJ (2011) Heat transfer and mass flow correlations for ventilated facades. Energy and Buildings 43:3696–3703

    Article  Google Scholar 

  35. Dalbert A, Penot F, Peube J (1981) Convection naturelle laminaire dans un canal vertical chauffé à flux constant. Int J Heat Mass Transf 24:1463–1473

    Article  MATH  Google Scholar 

  36. Desrayaud G, Chénier E, Joulin A, Bastide A, Brangeon B, Caltagirone JP, Cherif Y, Eymard R, Garnier C, Giroux-Julien S, Harnane Y, Joubert P, Laaroussi N, Lassue S, Le Quéré P, Li R, Saury D, Sergent A, Xin S, Zoubir A (2013) Benchmark solutions for natural convection flows in vertical channels submitted to different open boundary conditions. Int J Therm Sci 72:1–16

    Article  Google Scholar 

  37. Wang H, Xin S, Le Quéré P (2006) Etude numérique du couplage de la convection naturelle avec le rayonnement de surfaces en cavité carrée remplie d’air. Comptes Rendus Mécanique 334:48–57

    Article  MATH  Google Scholar 

  38. Webb BW, Hill DP (1989) High Rayleigh number laminar natural convection in an asymmetrically heated vertical channel. J Heat Transf 111:649–656

    Article  Google Scholar 

  39. Andreozzi A, Buonomo B, Manca O (2012) Numerical investigation of transient natural convection in a vertical channel-chimney system symmetrically heated at uniform heat flux. Int J Heat Mass Transf 55:6077–6089

    Article  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their remarks which allow to improve the paper. We also thank Mr. Xavier Chesneau (Maître de Conférence à l’UPVD) for his advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zied Nasri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasri, Z., Derouich, Y., Laatar, A.H. et al. Effect of surface radiation on natural convection in an asymmetrically heated channel-chimney system. Heat Mass Transfer 54, 1511–1529 (2018). https://doi.org/10.1007/s00231-017-2246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2246-6

Navigation