Heat and Mass Transfer

, Volume 54, Issue 5, pp 1427–1440 | Cite as

A basic study on Thermosyphon-type thermal storage unit (TSU) using Nanofluid as the heat transfer medium

Original
  • 40 Downloads

Abstract

This study proposed a novel thermosyphon-type thermal storage unit using water-based CuO nanofluid as the phase-change heat transfer medium. Seven tubular canisters containing solid-liquid phase-change material (PCM) with peak melting temperature of 100 °C were placed vertically into the center of the TSU which is a vertical cylindrical vessel made of stainless steel. Coat formed by depositing nanoparticles during the phase-change process was adopted to increase the wettability of the heat transfer surfaces of the canisters. We investigated the phase-change heat transfer, as well as the heat-storage and heat-release properties, of the TSU through experimental and computational analysis. Our results demonstrate that this thermal storage unit construction can propose good heat transfer and heat-storage/heat-release performance. The coating of nanoparticles onto the heat transfer surfaces increases the surface wettability and improves both the evaporation and condensation heat transfer. The main thermal resistance in the TSU results from the conductive heat transfer inside of the PCM. All phase-change thermal resistance of liquid film in charging and discharging processes can be ignored in this TSU.

Keywords

Thermal storage unit Nanofluid Thermosyphon Phase change material 

Nomenclature

Ah

Total heat transfer area (m2)

cp

specific heat at constant pressure (kJ/(kg·K))

g

local acceleration of gravity (9.8 m/s2)

h

heat transfer coefficient (W/(m2·K))

hfg

latent heat (kJ/kg)

t

Temperature (°C)

M

Mass (kg)

m

mass rate (kg/s)

L

Canister length (m)

P

Power (W)

p

Pressure (Pa)

q

heat flux (W/m2)

Re

Film Reynolds number of liquid film

r

Radius (m)

Greek letters

λ

thermal conductivity (W/(m·K))

ρ

density (kg/m3)

η

dynamic viscosity (kg/m·s)

τ

time (s)

Δτ

a short time interval

Subscripts

0

center of PCM

a

Cooling air

c

condensation

e

evaporation

int

Initial state

in

inlet of the cooling air

l

liquid

n

different endothermic parts

P

phase change material

s

saturation

w

copper tube wall

out

outlet et of the cooling air

τ

a certain time

Δτ

a short time interval

Notes

Acknowledgements

The present study is supported by the National Basic Research Program of China (973 Program), project number 2013CB228303.

Compliance with ethical standards

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

  1. 1.
    Farid MM, Amar MK, Siddique AKR, Said A (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45(9–10):1597–1615CrossRefGoogle Scholar
  2. 2.
    Oró E, de Gracia A, Castell A, Farid M, Cabeza L (2012) Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy 99:513–533CrossRefGoogle Scholar
  3. 3.
    Zhou D, Zhao CY (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605CrossRefGoogle Scholar
  4. 4.
    Mekhilef S, Saidur R, Safari A (2011) A review on solar energy use in industries. Renew Sust Energ Rev 15:1777–1790CrossRefGoogle Scholar
  5. 5.
    Pomianowski M, Heiselberga P (2013) Review of thermal energy storage technologies based on PCM application in buildings. Energy Buildings 67:56–69CrossRefGoogle Scholar
  6. 6.
    Tian Y, Zhao C-Y (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553CrossRefGoogle Scholar
  7. 7.
    Jamekhorshid A, Sadrameli SM, Farid M (2014) A review of microencapsulation methods of phase change materials (PCM) as a thermal energy storage (TES) medium. Renew Sust Energ Rev 31:531–542CrossRefGoogle Scholar
  8. 8.
    Liu M, Saman W, Bruno F (2012) Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sust Energ Rev 16(4):2118–2132CrossRefGoogle Scholar
  9. 9.
    Memon SA, Cui HZ, Zhang H, Xing F (2015) Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete. Appl Energy 139(1):43–55CrossRefGoogle Scholar
  10. 10.
    Tamme R, Bauer T, Buschle J, Laing D (2008) Latent heat storage above 120°C for applications in the industrial process heat sector and solar power generation. Int J Energy Res 32:264–271CrossRefGoogle Scholar
  11. 11.
    Arkar C, Medved S. Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres. Thermochim Acta 2005;438(1–2):192–201.Google Scholar
  12. 12.
    Hosseini MJ, Rahimi M, Bahrampoury R (2014) Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. Int Comm Heat Mass Trans 50(0):128–136CrossRefGoogle Scholar
  13. 13.
    Steinmann W-D, Tamme R (2008) Latent heat storage for solar steam systems. J Solar Energy Eng 130:011004–011005CrossRefGoogle Scholar
  14. 14.
    Tay NHS, Bruno F, Belusko M (2013) Experimental investigation of dynamic melting in a tube-in-tank PCM system. Appl Energy 104:137–148CrossRefGoogle Scholar
  15. 15.
    Medrano M, Yilmaz MO (2009) Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Appl Energy 86:2047–2055CrossRefGoogle Scholar
  16. 16.
    He Q, Zhang W (2001) A study on latent heat storage exchangers with the high-temperature phase-change material. Int J Energy Res 25(4):331–341CrossRefGoogle Scholar
  17. 17.
    Li M, Wu ZS (2011) Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers Manag 52:3275–3281CrossRefGoogle Scholar
  18. 18.
    Oya T, Nomura T, Okinaka N (2012) Phase change composite based on porous nickel and erythritol. Appl Therm Eng 40:373–377CrossRefGoogle Scholar
  19. 19.
    Regin AF, Solanki SS, Saini JS (2006) Latent heat thermal energy storage using cylindrical capsule: numerical and experimental investigations. Renew Energy 31:2025–2041CrossRefGoogle Scholar
  20. 20.
    Wang J, Wang S, Zhou Y (2010) Study on ice storage characteristics of small-scale storage tank filled with ice balls. In: Proceedings of the 2010 Asia–Pacific power and energy engineering conference, APPEECGoogle Scholar
  21. 21.
    Liu ZL, Wang Z, Ma CF (2006) An experimental study on heat transfer characteristics of heat pipe heat exchanger with latent heat storage. Part I: charging only and discharging only modes. Energy Convers Manag 47(7):944–966CrossRefGoogle Scholar
  22. 22.
    Kamal AR, Ismail MM (2000) Performance of a thermal storage system of the vertical tube type. Energy Convers Manag 41:1165–1190CrossRefGoogle Scholar
  23. 23.
    Weng Y-C, Cho H-P, Chang C-C, Chen S-L (2011) Heat pipe with PCM for electronic cooling. Appl Energy 1075(88):1825–1833CrossRefGoogle Scholar
  24. 24.
    Shabgard H, Bergman TL, Sharifietc N (2010) High temperature latent heat thermal energy storage using heat pipes. Int J Heat Mass Transf 53(15–16):2979–2988CrossRefMATHGoogle Scholar
  25. 25.
    Liu ZL, Wang Z, Ma CF (2006) An experimental study on the heat transfer characteristics of a heat pipe heat exchanger with latent heat storage. Part II: simultaneous charging/discharging modes. Energy Convers Manag 47:967–991CrossRefGoogle Scholar
  26. 26.
    Shabgard H, Robak CW, Bergman TL, Faghri A (2012) Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications. Sol Energy 86(30):816–1013CrossRefGoogle Scholar
  27. 27.
    Robak CW, Bergman TL, Faghri A (2011) Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications. Sol Energy 85:2461–2473CrossRefGoogle Scholar
  28. 28.
    Sharifi N, Wang S, Bergman TL, Faghri A (2012) Heat pipe-assisted melting of a phase change material. Int J Heat Mass Transf 55:3458–3469CrossRefGoogle Scholar
  29. 29.
    Nithyanandam K, Pitchumani R (2011) Analysis and optimization of a latent thermal energy storage system with embedded heat pipes. Int J Heat Mass Transf 54:4596–4610CrossRefMATHGoogle Scholar
  30. 30.
    Sharifi N, Faghri A, Bergman TL, Andraka CE. Simulation of heat pipe-assisted latent heat thermal energy storage with simultaneous charging and discharging. Int J Heat Mass Transf 1024 2015; 80:170–9.Google Scholar
  31. 31.
    Allen MJ, Sharifi N, Faghri A, Bergman TL (2015) Effect of inclination angle during melting and solidification of a phase change material using a combined heat pipe-metal foam or foil configuration. Int J Heat Mass Transf 80:767–780CrossRefGoogle Scholar
  32. 32.
    Sharifi N, Bergman TL, Allen MJ, Faghri A (2014) Melting and solidification enhancement using a combined heat pipe, foil approach. Int J Heat Mass Transf 78:930–941CrossRefGoogle Scholar
  33. 33.
    Jung EG, Boo JH (2014) Thermal analytical model of latent thermal storage with heat pipe heat exchanger for concentrated solar power. Sol Energy 102:318–332CrossRefGoogle Scholar
  34. 34.
    Baby R, Balaji C (2013) Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink. Int Comm Heat Mass Trans 46(0):27–30CrossRefGoogle Scholar
  35. 35.
    Khalifa A, Tan L, Date A, Akbarzadeh AA (2014) Numerical and experimental study of solidification around axially finned heat pipes for high temperature latent heat thermal energy storage units. Appl Therm Eng 70:609–619CrossRefGoogle Scholar
  36. 36.
    Mahdaoui M, Kousksou T, Blancher S, Ait Msaad A, El Rhafiki T, Mouqallid M (2014) A numerical analysis of solid–liquid phase change heat transfer around a horizontal cylinder. Appl Math Model 38(3):1101–1110MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ettouney HM,Alatiqi I,Al-Sahali M,Al-Ali.S. A Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems. Renew Energy 2004; 29(6):841–860.Google Scholar
  38. 38.
    Mesalhy O, Lafdi K, Elgafy A, Bowman K (2005) Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Convers Manag 46(6):847–867CrossRefGoogle Scholar
  39. 39.
    Zwanzig SD, Lian Y, Brehob EG (2013) Numerical simulation of phase change material composite wall board in a multi-layered building envelope. Energy Convers Manag 69(0):27–40CrossRefGoogle Scholar
  40. 40.
    Al-Abidi AA, Mat S, Sopianet K (2013) Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transf 61:684–695CrossRefGoogle Scholar
  41. 41.
    Kurnia JC, Sasmito AP, Jangamet SV (2013) Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES). Appl Therm Eng 50(1):896–907CrossRefGoogle Scholar
  42. 42.
    Tian Y, Zhao CY (2013) Thermal and exergetic analysis of metal foam-enhanced cascaded thermal energy storage (MF-CTES). Int J Heat Mass Transf 58:86–96CrossRefGoogle Scholar
  43. 43.
    Harris KT (2001) Phase-change phenomena in porous media-a non-local thermal equilibtium model. Heat Mass Transf 44:1619–1625CrossRefMATHGoogle Scholar
  44. 44.
    Nithyanandam K, Pitchumani R (2013) Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power. Appl Energy 103:400–415CrossRefGoogle Scholar
  45. 45.
    GUo SP, Li HL, Zhao J, Li X, Yan JY (2013) Numerical simulation study on optimizing charging process of the direct contact mobilized thermal energy storage. Appl Energy 112:1416–1423CrossRefGoogle Scholar
  46. 46.
    Zhao D, Tan G (2015) Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application. Appl Energy 138:381–392CrossRefGoogle Scholar
  47. 47.
    Wu M, Xu C, He Y-L (2014) Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules. Appl Energy 121(15):184–195CrossRefGoogle Scholar
  48. 48.
    Liu X, Fang G, Chen Z (2011) Dynamic charging characteristics modeling of heat storage device with heat pipe. 1026. Appl Therm Eng 31:2902–2908CrossRefGoogle Scholar
  49. 49.
    BW H, Wang Q, Liu ZH (2015) Fundamental research on the gravity assisted heat pipe thermal storage unit (GAHP-TSU) with porous phase change materials (PCMs) for medium temperature applications. Energy Convers Manag 89:376–386CrossRefGoogle Scholar
  50. 50.
    Liu ZH, Yang XF, Guo GL (2007) Effect of nanoparticles in nanofluids on thermal performance in a miniature thermosyphon. J Appl Phys 102:013526.1–013526.8Google Scholar
  51. 51.
    Liu Z-H, Li Y-Y (2012) A new frontier of nanofluid research- application of nanofluids in heat pipes. Int J Heat Mass Transf 23–24:6786–6797CrossRefGoogle Scholar
  52. 52.
    Yang X-F, Liu Z-H (2012) Flow boiling heat transfer in the evaporator of a loop Thermosyphon operating with CuO based aqueous Nanofluid. Int J Heat Mass Transf 25–26:7375–7384CrossRefGoogle Scholar
  53. 53.
  54. 54.
    Khandekar S, Joshi YM, Mehta B (2008) Thermal performance of closed two-phase thermosyphon using nanofluids. Int J Therm Sci 47:659–667CrossRefGoogle Scholar
  55. 55.
    Naphon P, Assadamongkol P, Borirak T (2008) Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. Int Comm Heat Mass Trans 35:1316–1319CrossRefGoogle Scholar
  56. 56.
    Kang SW, Wei WC, Tsai SH, Huang CC (2009) Experimental investigation of nanofluids on sintered heat pipe thermal performance. Appl Therm Eng 29:973–979CrossRefGoogle Scholar
  57. 57.
    Xue HS, Fan JR, Hu YC, Hong RH, Cen KF (2006) The interface effect of carbon nanotube suspension on the thermal performance of a two-phase closed thermosyphon. J Appl Phys 100(10):104909–104909-5CrossRefGoogle Scholar
  58. 58.
    Thomas LC (1980) Fundamentals of heat transfer. Prentice-Hall, Englewood Cliffs N JGoogle Scholar
  59. 59.
    Liou CP (1998) Limitations and proper use of the Hazen-Williams equation. J Hydraul Eng 124(9):951–954CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations