Skip to main content

Temperature dependency of the thermal conductivity of porous heat storage media


Analyzing the variation of thermal conductivity with temperature is vital in the design and assessment of the efficiency of sensible heat storage systems. In this study, the temperature variation of the thermal conductivity of a commercial cement-based porous heat storage material named – Füllbinder L is analyzed in saturated condition in the temperature range between 20 to 70°C (water based storage) with a steady state thermal conductivity and diffusivity meter. A considerable decrease in the thermal conductivity of the saturated sensible heat storage material upon increase in temperature is obtained, resulting in a significant loss of system efficiency and slower loading/un-loading rates, which when unaccounted for can lead to the under-designing of such systems. Furthermore, a new empirical prediction model for the estimation of thermal conductivity of cement-based porous sensible heat storage materials and naturally occurring crystalline rock formations as a function of temperature is proposed. The results of the model prediction are compared with the experimental results with satisfactory results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12



  2. IGLU is an analysis, modeling and assessment of an intelligent and environmentally friendly geothermal long-term heat storage system project funded by the German Federal Ministry of Economy and Energy (BMWi)

  3. For predicting the variation of thermal conductivity with temperature of single-phased solids such as rock forming minerals, \( {\lambda}_{T_o} \) is identical with λ dom (W m−1 K−1) in Eq. (12), and hence the use of Eqs. (13–16) is not necessary


A & B :

Constants related to the phonon scattering properties of a medium [1]

A’ & B′ :

Empirical constants of Zoth and Hanel [1] model

b :

Temperature coefficient of thermal conductivity of Kukkonen et al. [2] model

b 0 , b 1 & b 2 :

Fitted constants for the SH-1 transient needle probe

c :

Specific heat capacity of a medium

C :

Constant related to the radiative heat transfer properties of a medium

C′ :

Solid matrix texture dependent constant of Johansen [3] model

D :

Thermal diffusivity of a medium

Ei :

Exponential integral

G s :

Specific gravity of solids of a medium

K e :

Kersten’s number of Johansen [3] and Côté and Konrad [4] models

m :

Empirical coefficient of Aurangzeb et al. [5] model

n :

Porosity of a medium

q :

Phonon scattering coefficient of the proposed new model

q h :

Heat flux

Q :

Constant rate of application of heat for the TR-1 and SH-1 transient probes

r :

Distance between heater and temperature sensor for the TR-1 transient probe

r h :

Distance between the two needles of the SH-1 transient probe

S p :

Height of specimen in the steady state apparatus.

S r :

Degree of saturation of a medium

S v :

Height of the reference plate in the steady state apparatus

S 23 :

Distance between the bottom (cooling) and reference disc thermocouples in the steady state apparatus

S 12 :

Distance between the top (heating) and reference disc thermocouples in the steady state apparatus

t :

Duration of heating for the TR-1 transient needle probe

t h :

Duration of heating for the SH-1 transient needle probe

T :

Medium temperature

T 1 :

Temperature of the top (heating) plate in the steady state apparatus

T 2 :

Temperature of the reference plate in the steady state apparatus

T 3 :

Temperature of the bottom (cooling) plate in the steady state apparatus

T av :

Temperature at the center of a specimen (average temperature of a specimen) in the steady state apparatus

T 0 :

Temperature at the start of measurement (at time 0) for the SH-1 probe

T max :

Maximum temperature considered in a study

T o :

Reference temperature

ΔT :

Temperature response of the source over time for the TR-1 transient probe

u a :

Pore-air pressure in a medium

u w :

Pore-water pressure in a medium

V :

Bulk volume of a medium

VF m,k :

Volumetric fraction of the kth constituent mineral of a medium

V s :

Volume of solids of a medium

V v :

Volume of voids of a medium

W dry :

Dry bulk weight of a medium

WF m,k :

Weight fraction of the kth constituent mineral of a medium

w sat :

Saturated moisture content of a medium

W sat :

Saturated bulk weight of a medium

θ :

Volumetric water content of a medium

κ :

Matrix texture dependent parameter of the Côté and Konrad [4] model

λ :

Temperature dependent thermal conductivity of a specimen

λ a :

Thermal conductivity of air at a reference temperature T o

λ c :

Thermal conductivity of calcite at a reference temperature T o

λ d :

Dry thermal conductivity of a medium at a reference temperature T o

λ dom :

Thermal conductivity of the dominant mineral of a medium at a reference temperature T o

λ exp :

Experimental thermal conductivity as used in the Aurangzeb et al. [5] model

λ f :

Thermal conductivity of the fluid phase at a reference temperature T o

λ l :

Lattice (phonon) thermal conductivity

λ m,k :

Thermal conductivity of the kth constituent mineral of a medium at a reference temperature T o

λ ncg :

Thermal conductivity of hardened neat cement grout at a reference temperature T o

λ o :

Thermal conductivity at a reference temperature of the Kukkonen et al. [2] model

λ p :

Thermal conductivity of a specimen obtained using the steady state method

λ r :

Radiative thermal conductivity

λ s :

Thermal conductivity of the solid phase at a reference temperature T o

λ sat :

Saturated thermal conductivity of a medium at a reference temperature T o

\( {\lambda}_{T_o} \) :

Predicted thermal conductivity of a medium at a reference temperature T o of the new proposed model

\( {\left({\lambda}_{T_o}\right)}_{exp} \) :

Measured thermal conductivity of a medium at a reference temperature T o

\( {\left({\lambda}_{T_{max}}\right)}_{exp} \) :

Measured thermal conductivity of a medium at the maximum T max temperature considered in the study

λ v :

Thermal conductivity of the reference plate in the steady state apparatus

λ w :

Thermal conductivity of water at a reference temperature T o

ρ :

Density of a medium

ρ c :

Density of calcite mineral

ρ d :

Bulk dry density of a medium

ρ m,k :

Density of the kth constituent mineral of a medium

ρ ncg :

Density of hardened neat cement grout

ρ s :

Density of the solids of a medium

ρ sat :

Bulk saturated density of a medium

ρ w :

Density of water

ψ m :

Matric suction of a medium


  1. Zoth G, Hanel R (1988) Thermal conductivity. In: Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer, Dordrecht, pp 449–466

    Chapter  Google Scholar 

  2. Kukkonen IT, Jokinen J, Seipold U (1999) Temperature and pressure dependencies of thermal transport properties of rocks: implications for uncertainities in thermal lithosphere models and new laboratory measurements of high-grade rocks in the central Fennoscandian shield. Surv Geophys 20:33–59

    Article  Google Scholar 

  3. Johansen O (1975) Thermal conductivity of soils. Ph.D. Dissertation, Norwegian Univ. of Science and Technol., Trondheim (CRREL draft transl. 637, 1977)

  4. Côté J, Konrad JM (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42:443–458

    Article  Google Scholar 

  5. Aurangzeb, Khan LA, Maqsood A (2007) Prediction of effective thermal conductivity of porous consolidated media as a function of temperature: a test case of limestones. J Phys D Appl Phys 40(16):4953–4958

    Article  Google Scholar 

  6. Doughty C, Nir A, Tsang CF, Bodvarsson GS (1983) Heat storage in unsaturated soils: Initial theoretical analysis of storage design and operational method. In: Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm

  7. Hart GK, Whiddon WI (1984) Ground source heat pump planning workshop. Summary of proceedings. Electric Power Research Institute, EPRI Report RP, Palo Alto, pp 2033–2012

    Google Scholar 

  8. Rosen MA, Hooper FC (1989) A model for assessing the effects of berms on the heat loss from partially buried heat storage tanks. In: Proceedings of the 9th International Heat Transfer Conference, Jerusalem

  9. Braun JE, Klein SA, Mitchell JW (1981) Seasonal storage of energy in solar heating. Sol Energy 26(5):403–411

    Article  Google Scholar 

  10. Hesaraki A, Holmberg S, Haghighat F (2015) Seasonal thermal energy storage with heat pumps and low temperatures in building projects—a comparative review. Renew Sust Energ Rev 43:1199–1213

    Article  Google Scholar 

  11. Dincer I, Dost S, Li X (1997) Performance analyses of sensible heat storage systems for thermal applications. Int J Energy Res 21(12):1157–1171

    Article  Google Scholar 

  12. Laing D, Steinmann W-D, Tamme R, Richter C (2006) Solid media thermal storage for parabolic trough power plants. Sol Energy 80(10):1283–1289

    Article  Google Scholar 

  13. Laing D, Bahl C, Bauer T, Fiss M, Breidenbach N, Hempel M (2012) High-temperature solid-media thermal energy storage for solar thermal power plants. Proc IEEE 100(2):516–524

    Article  Google Scholar 

  14. Hailemariam H, Wuttke F (2016) Hydrothermal modelling and analysis of sensible heat energy storages for small-scale dwellings considering natural convection. Energy Procedia 97:462–469

    Article  Google Scholar 

  15. Miao X-Y, Beyer C, Görke U-J, Kolditz O, Hailemariam H, Nagel T (2016) Thermo-hydro-mechanical analysis of cement-based sensible heat stores for domestic applications. Environ Earth Sci 75(18):1293

    Article  Google Scholar 

  16. Kersten MS (1949) Thermal properties of soils. Bulletin 28, engineering Experiment Station. University of Minnesota, Minneapolis

    Google Scholar 

  17. Penner E, Johnston GH, Goodrich LE (1975) Thermal conductivity laboratory studies of some MacKenzie highway soils. Can Geotech J 12(3):271–288

    Article  Google Scholar 

  18. Salomone LA, Kovacs WD (1984) Thermal resistivity of soils. J Geotech Eng 110(3):375–389

    Article  Google Scholar 

  19. Salomone LA, Kovacs WD, Kusuda T (1984) Thermal performance of fine-grained soils. J Geotech Eng 110(3):359–374

    Article  Google Scholar 

  20. Salomone LA, Marlowe JI (1989) Soil rock classification according to thermal conductivity. Electric Power Research Institute, EPRI CU–6482, Palo Alto

    Google Scholar 

  21. Mottaghy D, Vosteen HD, Schellschmidt R (2007) Temperature dependence of the relationship of thermal diffusivity versus thermal conductivity for crystalline rocks. Int J Earth Sci.

  22. Hofmeister A (1999) Mantle values of thermal conductivity geotherm from phonon lifetimes. Science 283:1699–1709

    Article  Google Scholar 

  23. McKenzie D, Jackson J, Priestley K (2005) Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett 233:337–349

    Article  Google Scholar 

  24. Jokinen J (2000) Uncertainty analysis and inversion of geothermal conductive models using random simulation methods. Oulu University, Oulu

    Google Scholar 

  25. Vosteen HD, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth 28:499–509

    Article  Google Scholar 

  26. Schatz JF, Simmons G (1972) Thermal conductivity of earth materials at high temperatures. J Geophys Res 77:6966–6983

    Article  Google Scholar 

  27. Ziman JM (1960) Electrons and phonons. Oxford University Press, London

    MATH  Google Scholar 

  28. Beck AE (1988) Methods for determining thermal conductivity and thermal diffusivity. In: Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  29. Sengers JV, Watson JTR (1986) Improved international formulations for the viscosity and thermal conductivity of water substance. J Phys Chem Ref Data 15(4):1291–1314

    Article  Google Scholar 

  30. Ramires MLV, Nieto de Castro CA, Nagasaka Y, Nagashima A, Assael MJ, Wakeham WA (1995) Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data 24:1377–1381

    Article  Google Scholar 

  31. McGuinness T, Hemmingway P, Long M (2014) Design and development of a low-cost divided bar apparatus. Geotech Test J 37(2):230–241

    Article  Google Scholar 

  32. Zeng SQ, Hunt A, Greif R (1995) Geometric structure and thermal conductivity of porous medium silica aerogel. J Heat Transf 117(4):1055–1058

    Article  Google Scholar 

  33. Fu X, Viskanta R, Gore JP (1998) Prediction of effective thermal conductivity of cellular ceramics. Int Commun Heat Mass Transfer 25(2):151–160

    Article  Google Scholar 

  34. Singh KJ, Singh R, Chaudhary DR (1998) Heat conduction and a porosity correction term for spherical and cubic particles in a simple cubic packing. J Phys D Appl Phys 31(14):1681–1687

    Article  Google Scholar 

  35. Bouguerra A, Aϊt-Mokhtar A, Amiri O, Diop MB (2001) Measurement of thermal conductivity, thermal diffusivity and heat capacity of highly porous building materials using transient plane source technique. Int Commun Heat Mass Transfer 28(8):1065–1078

    Article  Google Scholar 

  36. Lee WD, Kingery WD (1960) Radiation energy transfer and thermal conductivity of ceramic oxides. J Am Ceram Soc 43(11):594–607

    Article  Google Scholar 

  37. Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: T.J. Ahrens (Ed.), Rock Physics and Phase Relations: A handbook of physical constants, AGU Reference Shelf 3, American Geophysical Union, Washington DC, pp 105–126. (link for pdf can be found at:

  38. Lu S, Ren T, Gong Y, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71(1):8–14

    Article  Google Scholar 

  39. Hailemariam H, Shrestha D, Wagner N, Wuttke F (2016) Thermal and dielectric behaviour of fine-grained soils. Environ Geotechnics 4(2):79–93

    Article  Google Scholar 

  40. Farouki OT (1981) Thermal properties of soils. CRREL monograph 81–1, US Army Corps of Engineers. Cold Regions Research and Engineering Laboratory, Hanover

    Google Scholar 

  41. Abuel-Naga HM, Bergado DT, Bouazza A (2008) Thermal conductivity evolution of saturated clay under consolidation process. Int J Geomech 8(2):114–122

    Article  Google Scholar 

  42. Hailemariam H, Shrestha D, Wuttke F (2016) Steady state vs transient thermal conductivity of soils. In: Wuttke F, Bauer S, Sánchez M (eds) Proceedings of the 1st international conference on energy geotechnics ICEGT 2016. Taylor & Francis Group, Kiel, pp 389–396

    Google Scholar 

  43. Moorehead DR (1986) Cementation by the carbonation of hydrated lime. Cem Concr Res 16:700–708

    Article  Google Scholar 

  44. Cultrone G, Sebastián E, Ortega Huertas M (2005) Forced and natural carbonation of lime-based mortars with and without additives: mineralogical and textural changes. Cem Concr Res 35:2278–2289

    Article  Google Scholar 

  45. Cizer O, Van Balen K, Van Gemert D (2006) Carbonation reaction of lime hydrate and hydraulic binders at 20°C. In: Proceedings of the 1st International Conference on Accelerated Carbonation for Environmental and Materials Engineering, The Royal Society, London

  46. Eleni D, Thomas S, Aurela S, Frederik V (2014) Literature study on the rate and mechanism of carbonation of lime mortars. In: Proceedings of the 9th International Masonry Conference, International Masonry Society, Guimarães

  47. Robertson EC (1988) Thermal properties of rocks. United States Department of the Interior Geological Survey, Reston

    Google Scholar 

  48. Kaya BA, Kar F (2014) Thermal and mechanical properties of concretes with styropor. J Appl Math Phys 2:310–315

    Article  Google Scholar 

  49. Somerton WH (1992) Thermal properties and temperature related behaviour of rock/fluid systems. Elsevier, New York

    Google Scholar 

  50. Powell RW, Ho CY, Liley PE (1966) Thermal conductivity of selected materials. Category 5 – thermodynamic and transport properties, Tech. Rep. NSRDS-NBS 8. National Bureau of Standards, Washington DC

    Google Scholar 

  51. Irani M, Cokar M (2016) Discussion on the effects of temperature on thermal properties in the steam-assisted-gravity-drainage (SAGD) process. Part 1: thermal conductivity. SPE J 21(02):334–352

    Article  Google Scholar 

  52. Adams EE, Cosler DJ, Helfrich KR (1990) Evaporation from heated water bodies: predicting combined forced plus free convection. Water Resour Res 26(3):425–435

    Article  Google Scholar 

  53. Abdolhosseini Qomi MJ, Ulm F-J, Pellenq RJ-M (2015) Physical origins of thermal properties of cement paste. Phys Rev Applied 3(6):064010

    Article  Google Scholar 

  54. ASTM 5334-08 (2008) Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. West Conshohocken, , Pennsylvania, USA.

  55. IEEE 442 (1992) Guide for soil thermal resistivity measurements. Institute of Electrical and Electronics Engineers, Inc, New York, pp 1001 7–102394

    Google Scholar 

  56. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford, London

    MATH  Google Scholar 

  57. Kluitenberg GJ, Ham JM, Bristow KL (1993) Error analysis of the heat pulse method for measuring soil volumetric heat capacity. Soil Sci Soc Am J 57:1444–1451

    Article  Google Scholar 

  58. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover Publications, Inc., New York

    MATH  Google Scholar 

  59. Mitchell JK, Kao TC (1978) Measurement of soil thermal resistivity. J Geotech Eng Div 104:1307–1320

    Google Scholar 

  60. Low JE, Loveridge FA, Powrie W (2013) Measuring soil thermal properties for use in energy foundation design. In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France

  61. Alrtimi AA (2014) Experimental investigation of thermal conductivity of soils and borehole grouting materials. Ph.D. Dissertation, School of Civil Engineering and Geosciences, Newcastle University

  62. Momose T, Sakaguchi I, Kasubuchi T (2008) Development of an apparatus for measuring one-dimensional steady-state heat flux of soil under reduced air pressure. Eur J Soil Sci 59(5):982–989

    Article  Google Scholar 

  63. Birch F, Clark H (1940) The thermal conductivity of rocks and its dependence upon temperature and composition. Am J Sci 238(8):529–558

    Article  Google Scholar 

  64. Popov Y, Pribnow DFC, Sass JH, Williams CF, Burkhard H (1999) Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 28(2):253–276

    Article  Google Scholar 

  65. Stegner J, Drefke C, Hailemariam H, Anbergen H, Wuttke F, Sass I (2017) Messtechnik für den Erdkabeltrassenbau – Ermittlung der Wärmeleitfähigkeit von Bettungsmaterialien. Bauphysik 39(1):41–48 (written in German)

    Article  Google Scholar 

  66. Richards LA (1941) A pressure membrane extraction apparatus for soil suction. Soil Sci 51(5):377–386

    Article  Google Scholar 

  67. Gardner WR (1956) Calculation of capillary conductivity from pressure plate outflow data. Soil Sci Soc Am Proc 20:317–320

    Article  Google Scholar 

  68. Hilf JW (1956) An investigation of pore-water pressure in compacted cohesive soils. Ph.D. Dissertation, Technical Memo No.654, United States Bureau of Reclamation, Denver

  69. Delage P, Romero E, Tarantino A (2008) Recent developments in the techniques of controlling and measuring suction in unsaturated soils. In: Proc. 1st Eur. Conf. on Unsaturated Soils, CRC Press, Durham, pp 33–52

  70. Etheridge MA, Wall VJ, Vernon RH (1983) The role of the fluid phase during regional metamorphism and deformation. J Metamorph Geol 1(3):205–226

    Article  Google Scholar 

  71. Torgersen T (1990) Crustal-scale fluid transport: magnitude and mechanisms. EOS Trans Am Geophys Union 71(l):1–13

    Article  Google Scholar 

  72. Clauser C (1992) Permeability of crystalline rocks. EOS Trans Am Geophys Union 73(21):233–238

    Article  Google Scholar 

  73. Cannon JR (1984) The one-dimensional heat equation. Encyclopedia of mathematics and its applications, vol 23, 3rd edn. Addison-Wesley Publishing Company/Cambridge University Press, California, p XXV+483

    Book  Google Scholar 

  74. Houston SL, Houston WN, Wagner AM (1994) Laboratory filter paper measurements. Geotech Test J 17(2):185–194

    Article  Google Scholar 

  75. ASTM 5298-03 (2003) Standard test method for measurement of soil potential (suction) using filter paper. ASTM International, West Conshohocken, Pennsylvania, USA

  76. Kraus EH, Hunt WF, Ramsdell LS (1959) Mineralogy: an introduction to the study of minerals and crystals, 5th edn. McGraw Hill, New York, p 202

    Google Scholar 

  77. Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford, London

    Book  Google Scholar 

  78. Tang F, Wang L, Lu Y, Yang X (2015) Thermophysical properties of coal measure strata under high temperature. Environ Earth Sci 73(10):6009–6018

    Article  Google Scholar 

  79. Sepaskhah AR, Boersma L (1979) Thermal conductivity of soils as a function of temperature and water content. Soil Sci Soc Am J 43:439–444

    Article  Google Scholar 

  80. Jorand R, Fehr A, Koch A, Clauser C (2011) Study of the variation of thermal conductivity with water saturation using nuclear magnetic resonance. J Geophys Res 116:B08208

    Article  Google Scholar 

Download references


The authors would like to acknowledge the financial support provided by the German Federal Ministry for Economic Affairs and Energy (BMWi) under Grant numbers 0325547B (Project IGLU) and 03ET6122A (Project ANGUS II) as well as the support of Project Management Jülich.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Henok Hailemariam.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hailemariam, H., Wuttke, F. Temperature dependency of the thermal conductivity of porous heat storage media. Heat Mass Transfer 54, 1031–1051 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: