Heat and Mass Transfer

, Volume 54, Issue 3, pp 727–744 | Cite as

Experimental and numerical study on thermal-hydraulic performance of wing-shaped-tubes-bundle equipped with winglet vortex generators

  • Mohamed A. Abdelatief
  • Sayed Ahmed E. Sayed Ahmed
  • Osama M. Mesalhy


The present work evaluates, experimentally and numerically, by the aid of commercial code FLUENT 6.3.26, the effects of relative locations (∆X or ∆Y), heights (hw), and span-angle (θ) of winglet-vortex-generators (WVGs) on thermal-hydraulic performance enhancement for down-stream and/or up-stream wing-shaped-tubes bundle heat exchangers for air Re ranging from 1.85 × 103 to 9.7 × 103 while water Re = 5 × 102. hw is set as 5 mm, 7.5 mm and 10 mm. For tube down-stream, θ is set as 0° (Base-line-case) and from 5° to 45° clockwise common-flow up (CFUp) and counterclockwise common-flow down (CFDn) while for tube up-stream it is set as −5°, −10° and −15° CFUp. Results show that the increase of θ counterclockwise-(CFDn) or clockwise-(CFUp) leads to increase the values of Nu number. Using WVGs with (+5 ° ≤ θ ≤ +45°) results in increasing Nu number by about from 34 to 48% comparing with that of base-line-case. The lowest values of drag coefficient (f) for tube down-stream are obtained at +5° CFDn and −15° CFUp with respect to the base-line case. For tube up-stream, Nu number increases by increasing θ from 0° to −5° and the values of Nu number for θ varying from −5° to −15° have no significant changes. (f) increases with hw and has negligible effect on ha. Furthermore, optimization analyses of θ and longitudinal fin (LF) are utilized, in four cases, for finding the optimum combination and maximum efficiency. The highest values of heat transfer parameters such as effectiveness (ε), area goodness factor (G) and efficiency index (η) and the lowest values of fluid-flow parameters like (f) and hence the best efficiency, are achieved for −15° CFUp down-stream, (“case 3” of −15° CFUp down-stream and 6 mm LF height) and +5° CFDn down-stream. Correlations of Nu number, (f) and (ε) as a function of θ and Re for the studied cases are performed.


WVGs Span-angle Winglet height Relative position Wing-shaped Thermal-hydraulic 

List of symbols

Alphabet- upper case


Air volume flow rate, m3/s

= j/f

Area goodness factor


Colburn j factor, j = St.Pr2/3


Number of tube rows


Nusselt number, (h.Deq)/k


Pumping power, (∆Pa. FRa), W


Prandtl number, (μ. cp)/k


Drag coefficient, (2.∆P)/(ρaf.Va 2)


Heat transfer rate, W


Reynolds number, (ρ.V.Deq)/μ


Thermal resistance, K/W


Stanton number, Nu/(Re.Pr)


Temperature, K


Tube surface temperature, K

Alphabet- lower case


Heat transfer coefficient, W/m2.K


Fin height, m


Winglet height, m


mass flow rate, kg/s

Greek symbols


Fin thickness, m


Winglet thickness, m


Absolute viscosity, Pa.s


Density, kg/m3


Span angle °


Effectiveness, (ρaf.cpf (Tai-Tae))/ ∆Pa


Efficiency Index, (St/Stc)/(Pdc/Pdcc)


Fin efficiency


Overall fin efficiency


Pressure drop, Pa


Dynamic head difference, m H2O


Air temperature difference, °C


Water temperature difference, °C


Logarithmic mean temperature difference, °C


Relative distance in X-direction, m


Relative distance in Y-direction, m





Air film


Air inlet


















Winglet or Water



Common flow down


Common flow up


Longitudinal fin


Longitudinal finned-tube heat exchanger


Log mean temperature difference


Longitudinal vortex generators


Winglet vortex generators


Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Depaiwa N, Chompookham T, Promvonge P (2010) Thermal enhancement in a solar air heater channel using rectangular winglet vortex generators. Proceedings of the PEA-AIT International Conference on Energy and Sustainable Development: Issues and Strategies (ESD), IEEE, Chiang Mai, June 2–4, p 1–7Google Scholar
  2. 2.
    Sayed Ahmed SE, Mesalhy OM, Abdelatief MA (2016) Heat transfer characteristics and entropy generation for wing-shaped-tubes with longitudinal external fins in cross-flow. J Mech Sci Technol 30(6):2849–2863CrossRefGoogle Scholar
  3. 3.
    Sayed Ahmed SE, Ibrahiem EZ, Mesalhy OM, Abdelatief MA (2014) Heat transfer characteristics of staggered wing-shaped tubes bundle at different angles of attack. Heat Mass Transf 50:1091–1102CrossRefGoogle Scholar
  4. 4.
    Sayed Ahmed SE, Ibrahiem EZ, Mesalhy OM, Abdelatief MA (2015) Effect of attack and cone angels on air flow characteristics for staggered wing shaped tubes bundle. Heat Mass Transf 51:1001–1016CrossRefGoogle Scholar
  5. 5.
    Sayed Ahmed SE, Mesalhy OM, Abdelatief MA (2015) Effect of longitudinal-external-fins on fluid flow characteristics for wing-shaped tubes bundle in crossflow. J Thermody.
  6. 6.
    Min C, Qi C, Kong X, Dong J (2010) Experimental study of rectangular channel with modified rectangular longitudinal vortex generators. Int J Heat Mass Transf 53:3023–3029CrossRefGoogle Scholar
  7. 7.
    Wu JM, Tao WQ (2008) Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator, Part A: verification of field synergy principle. Int J Heat Mass Transf 51:1179–1191CrossRefMATHGoogle Scholar
  8. 8.
    Yoo S, Park D, Chung M (2002) Heat transfer enhancement for fin–tube heat exchanger using vortex generators. KSME Int J 16(1):109–115CrossRefGoogle Scholar
  9. 9.
    Promvonge P, Chompookham T, Kwankaomeng S, Thianpong C (2010) Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators. Journal of Energy Conversion Management 51:1242–1249CrossRefGoogle Scholar
  10. 10.
    Chompookham T, Thianpong C, Kwankaomeng S, Promvonge P (2010) Heat transfer augmentation in a wedge–ribbed channel using winglet vortex generators. Int Commun Heat Mass Transf 37:163–169CrossRefGoogle Scholar
  11. 11.
    Edwards FJ, Alker GJR (1974) The improvement of forces convection surface heat transfer using surfaces protrusions in the form of (A) cubes and (B) vortex generators, In: Proc. 5th Int. Heat Transfer Tokyo, 2:244–248Google Scholar
  12. 12.
    Tiggelbeck ST, Mitra NK, Fiebig M (1993) Experimental investigations of heat transfer enhancement and flow losses in a channel with double rows of longitudinal vortex generators. Int J Heat Mass Transf 36:2327–2337CrossRefGoogle Scholar
  13. 13.
    Yuan ZX, Tao WQ, Yan XT (2003) Experimental study on heat transfer in ducts with winglet disturbances. Heat Transfer Eng 24:76–84CrossRefGoogle Scholar
  14. 14.
    Fiebig M, Valencia A, Mitra NK (1993) Wing-type vortex generators for fin-and-tube heat exchangers. Exp Thermal Fluid Sci 7:287–295CrossRefGoogle Scholar
  15. 15.
    Fiebig M, Valencia A, Mitra NK (1994) Local heat transfer and flow losses in fin-and tube heat exchangers with vortex generators: a comparison of round and flat tubes. Exp Thermal Fluid Sci 8:35–45CrossRefGoogle Scholar
  16. 16.
    Pesteei SM, Subbarao PMV, Agarwal RS (2005) Experimental study of the effect of winglet location on heat transfer enhancement and pressure drop in fin-tube heat exchangers. Appl Therm Eng 25:1684–1696CrossRefGoogle Scholar
  17. 17.
    Aris MS, McGlen R, Owen I, Sutcliffe CJ (2011) An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack. Appl Therm Eng 31:2230–2240CrossRefGoogle Scholar
  18. 18.
    Wu JM, Zhang H, Yan CH, Wang Y (2012) Experimental study on the performance of a novel fin-tube air heat exchanger with punched longitudinal vortex generator. Energy Convers Manag 57:42–48CrossRefGoogle Scholar
  19. 19.
    He J, Liu L, Jacobi AM (2010) Air-side heat-transfer enhancement by a new winglet type vortex generator array in a plain-fin round-tube heat exchanger. J Heat Transf 132(7):(9 pages):071801Google Scholar
  20. 20.
    Ahmed HE, Mohammed HA, Yusoff MZ (2012) An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sust Energ Rev 16(8):5951–5993CrossRefGoogle Scholar
  21. 21.
    Ahmed HE, Mohammed HA, Yusoff MZ (2012) Heat transfer enhancement of laminar nanofluids flow in a triangular duct using vortex generator. Superlattice Microst 52(3):398–415CrossRefGoogle Scholar
  22. 22.
    Hwang SW, Kim DH, Min JK, Jeong JH (2012) CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators. J Mech Sci Technol 26(9):2949–2958CrossRefGoogle Scholar
  23. 23.
    Zeng M, Tang LH, Lin M, Wang QW (2010) Optimization of heat exchangers with vortex-generator fin by Taguchi method. Appl Therm Eng 30:1775–1783CrossRefGoogle Scholar
  24. 24.
    Lemouedda A, Breuer M, Franz E, Botsch T, Delgado A (2010) Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger. Int J Heat Mass Transf 53:5386–5399CrossRefMATHGoogle Scholar
  25. 25.
    He YL, Han H, Tao WQ, Zhang YW (2012) Numerical study of heat-transfer enhancement by punched winglet-type vortex generator arrays in fin-and-tube heat exchangers. Int J Heat Mass Transf 55(21–22):5449–5458CrossRefGoogle Scholar
  26. 26.
    Jang JY, Hsu LF, Leu JS (2013) Optimization of the span angle and location of vortex generators in a plate-fin and tube heat exchanger. Int J Heat Mass Transf 67:432–444CrossRefGoogle Scholar
  27. 27.
    He YL, Chu P, Tao WQ, Zhang YW, Xie T (2013) Analysis of heat transfer and pressure drop for fin-and-tube heat exchangers with rectangular winglet-type vortex generators. Appl Therm Eng (61(2, 3):770–783Google Scholar
  28. 28.
    Gholami AA, Wahid MA, Mohammed HA (2014) Heat transfer enhancement and pressure drop for fin-and-tube compact heat exchangers with wavy rectangular winglet-type vortex generators. Int Commun Heat Mass Transfer 54:132–140CrossRefGoogle Scholar
  29. 29.
    Chu P, He YL, Lei YG, Tian LT, Li R (2009) Three-dimensional numerical study on fin and-oval-tube heat exchanger with longitudinal vortex generators. Appl Therm Eng 29:859–876CrossRefGoogle Scholar
  30. 30.
    Ramadhan AA (2012) Numerical study of fluid flow and heat transfer over a Bank of Oval-Tubes Heat Exchanger with vortex generators. Anbar Journal for Engineering Sciences AJES 5(1):88–108Google Scholar
  31. 31.
    FLUENT Inc (2006) FLUENT 6.3 User’s guide. Fluent documentationGoogle Scholar
  32. 32.
    Zehua H, Sun D (2000) Predicting local surface heat transfer coefficients by different turbulent k-e models to simulate heat and moisture transfer during air-blast chilling. Int J Refrig 24(7):702–717Google Scholar
  33. 33.
    Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale GG (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A4:1510–1520MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Cengel YA (1998) Heat transfer a practical approach. McGrawHill, New JerseyGoogle Scholar
  35. 35.
    Sayed Ahmed SE, Mesalhy OM, Abdelatief MA (2015) Flow and heat transfer enhancement in tube heat exchangers. Heat Mass Transf 51:1607–1630CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mohamed A. Abdelatief
    • 1
  • Sayed Ahmed E. Sayed Ahmed
    • 1
  • Osama M. Mesalhy
    • 1
  1. 1.Mechanical Power Engineering Department, Faculty of engineeringZagazig UniversityZagazigEgypt

Personalised recommendations