Heat and Mass Transfer

, Volume 54, Issue 3, pp 685–696 | Cite as

Turbulent forced convection of nanofluids downstream an abrupt expansion



Turbulent forced convection of Nanofluids through an axisymmetric abrupt expansion is investigated numerically in the present study. The governing equations are solved by ANYS 14.0 CFD code based on the finite volume method by implementing the thermo-physical properties of each nanofluid. All results are analyzed through the evolutions of skin friction coefficient and Nusselt number. For each nanofluid, the effect of both volume fraction and Reynolds number on this type of flow configuration, are examined. An increase on average Nusselt number with the volume fraction and Reynolds number, are highlighted and correlated. Two relationships are proposed. The first one, determines the average Nusselt number versus Reynolds number, volume fraction and the ratio of densities of the solid particles to that of the base fluid (\( \overline{Nu}=f\left(\operatorname{Re},\phi, \frac{\rho_s}{\rho_f}\right) \)). The second one varies according Reynolds number, volume fraction and the conductivities ratio of solid particle to that of the base fluid (\( \overline{Nu}=f\left(\operatorname{Re},\phi, \frac{k_s}{k_f}\right) \)).


Abrupt expansion Forced convection Nanofluids Turbulent flow Turbulence modeling 



skin friction coefficient (−)

turbulent modeling constant (−)


turbulence intensity (−)


kinetic energy (m2 s−2)


Nusselt number (−)


mean static pressure (Pa)


Prandtl number (−)


Reynolds number (−)


mean temperature (K)


ambient temperature (K)


wall temperature (K)

U, V

Velocity components (m s−1)

Greek characters


Diameters ratio (−)


expansion coefficient (1/K)


thermal diffusivity (m2 s−1)


dissipation (m2 s−3)


density (kg m−3)


nanoparticles volume fraction (−)


dynamic viscosity (N s m−2)


eddy viscosity (N s m−2)









  1. 1.
    Durst F, Melling A, Whitelaw JH (1974) Low Reynolds number flow over a plane symmetric sudden expansion. J Fluid Mech 64(01):111–128CrossRefGoogle Scholar
  2. 2.
    Goharzadeh A, Rodgers P (2009) Experimental measurement of laminar axisymmetric flow through confined annular geometries with sudden inward expansion. J Fluids Eng 131(12):124501CrossRefGoogle Scholar
  3. 3.
    Oliveira PJ, Pinho FT (1997) Pressure drop coefficient of laminar Newtonian flow in axisymmetric sudden expansions. Int J Heat Fluid Flow 18(5):518–529CrossRefGoogle Scholar
  4. 4.
    Miranda JP, Pinho FT, Oliveira PJ (2003) local loss coefficient in sudden expansion laminar flows of inelastic shear-thinning fluids, In 17th International Congress of Mechanical EngineeringGoogle Scholar
  5. 5.
    Chiang TP, Sheu TW, Wang SK (2000) Side wall effects on the structure of laminar flow over a plane-symmetric sudden expansion. Comput Fluids 29(5):467–492CrossRefGoogle Scholar
  6. 6.
    Fearn RM, Mullin T, Cliffe KA (1990) Nonlinear flow phenomena in a symmetric sudden expansion. J Fluid Mech 211:595–608CrossRefGoogle Scholar
  7. 7.
    Hammad KJ, Vradis GC, Ötügen MV (2001) Laminar flow of a Herschel-Bulkley fluid over an axisymmetric sudden expansion. J Fluids Eng 123(3):588–594CrossRefGoogle Scholar
  8. 8.
    K. N. Alammar (2009) Effect of Hydrodynamic Development on Flow and Heat Transfer Characteristics in an Axisymmetric sudden Expansion. In New Trends in Fluid Mechanics Research. Springer, Berlin Heidelberg. pp 242–244Google Scholar
  9. 9.
    Aung W (1983) An experimental study of laminar heat transfer downstream of backsteps. J Heat Transf 105(4):823–829CrossRefGoogle Scholar
  10. 10.
    Sparrow EM, Chuck W (1987) PC solutions for heat transfer and fluid flow downstream of an abrupt, asymmetric enlargement in a channel. Numer Heat Transfer Part A: Appl 12(1):19–40MATHGoogle Scholar
  11. 11.
    Chieng CC, Launder BE (1980) On the calculation of turbulent heat transport downstream from an abrupt pipe expansion. Numer Heat Transfer 3(2):189–207CrossRefGoogle Scholar
  12. 12.
    Gooray AM, Watkins CB, Aung W (1985) Turbulent heat transfer computations for rearward-facing steps and sudden pipe expansions. J Heat Transf 107(1):70–76CrossRefGoogle Scholar
  13. 13.
    Zemanick PP, Dougall RS (1970) Local heat transfer downstream of abrupt circular channel expansion. J Heat Transf 92(1):53–60CrossRefGoogle Scholar
  14. 14.
    Guo ZY, Li DY, Liang XG (1996) Thermal effect on the recirculation zone in sudden-expansion gas flows. Int J Heat Mass Transf 39(13):2619–2624CrossRefMATHGoogle Scholar
  15. 15.
    Chandrasekar M, Suresh S (2009) A review on the mechanisms of heat transport in nanofluids. Heat Transfer Eng 30(14):1136–1150CrossRefGoogle Scholar
  16. 16.
    Choi SU (2008) Nanofluids: A new field of scientific research and innovative applications. Heat Transfer Eng 29(5):429–431MathSciNetCrossRefGoogle Scholar
  17. 17.
    Godson L, Raja B, Lal DM, Wongwises S (2010) Enhancement of heat transfer using nanofluids—an overview. Renew Sust Energ Rev 14(2):629–641CrossRefGoogle Scholar
  18. 18.
    Kakac S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52(13):3187–3196CrossRefMATHGoogle Scholar
  19. 19.
    Saidur R, Leong KY, Mohammad HA (2011) A review on applications and challenges of nanofluids. Renew Sust Energ Rev 15(3):1646–1668CrossRefGoogle Scholar
  20. 20.
    Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46(1):1–19CrossRefGoogle Scholar
  21. 21.
    Santosh Christopher D, Kanna PR, Madhusudhana GR, Venkumar P, Mohammed HA (2012) Numerical investigation of heat transfer from a two-dimensional sudden expansion flow using nanofluids. Numer Heat Transfer Part A: Appl 61(7):527–546CrossRefGoogle Scholar
  22. 22.
    Kanna PR, Das MK (2006) Heat transfer study of two-dimensional laminar incompressible wall jet over backward-facing step. Numer Heat Transfer Part A: Appl 50(2):165–187CrossRefGoogle Scholar
  23. 23.
    Abu-Nada E (2008) Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int J Heat Fluid Flow 29(1):242–249CrossRefGoogle Scholar
  24. 24.
    O. A. Alawi, N. A. C. Sidik & W. Y. Tey (2015) A numerical study of heat transfer to turbulent separation nanofluid flow in an annular passage. Jurnal Teknologi, 77(8)Google Scholar
  25. 25.
    C. S. Oon, S. N. Yew, B. T. Chew, K. M. S. Newaz, A. Al-Shamma'a, A. Shaw, & A. Amiri (2015) Numerical simulation of heat transfer to separation tio2/water nanofluids flow in an asymmetric abrupt expansion. In EPJ Web of Conferences (Vol. 92), p. 02056). EDP SciencesGoogle Scholar
  26. 26.
    Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46(19):3639–3653CrossRefMATHGoogle Scholar
  27. 27.
    Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20(4):571–571CrossRefGoogle Scholar
  28. 28.
    ANSYS, ANSYS Workbench (n.d.). 14.0 Help Documentation [DB]. Mechanical APDL ANSYS Parametric Design Language GuideGoogle Scholar
  29. 29.
    S. V. Patankar (1980) Numerical heat transfer and fluid flow. CRC press, New YorkGoogle Scholar
  30. 30.
    Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3(2):269–289CrossRefMATHGoogle Scholar
  31. 31.
    Berrich E, Aloui F, Pierrat D, Gros L, Hermon C, Legrand J (n.d.) Investigations expérimentales par la technique de PIV en vue de valider des approches numériques modélisant un écoulement turbulent à travers des élargissements brusques et progressifsGoogle Scholar
  32. 32.
    Abdellahoum C, Mataoui A, Oztop HF (2015) Turbulent forced convection of nanofluid over a heated shallow cavity in a duct. Powder Technol 277:126–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Theoretical and Applied Laboratory of Fluid Mechanics, Faculty of PhysicsUniversity of Science and Technology Houari Boumedienne – USTHBAlgiersAlgeria

Personalised recommendations