Heat and Mass Transfer

, Volume 54, Issue 3, pp 793–801 | Cite as

A mathematical analysis of drug dissolution in the USP flow through apparatus

  • David McDonnell
  • D. M. D’Arcy
  • L. J. Crane
  • Brendan Redmond
Original

Abstract

This paper applies boundary layer theory to the process of drug dissolution in the USP (United States Pharmacopeia) Flow Through Apparatus. The mass transfer rate from the vertical planar surface of a compact within the device is examined. The theoretical results obtained are then compared with those of experiment. The paper also examines the effect on the dissolution process caused by the interaction between natural and forced convection within the apparatus and the introduction of additional boundaries.

Notes

Compliance with Ethical Standards

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    McDonnell D, Redmond B, Crane LJ (2013) Mass transfer from a vertical flat plate due to natural convection with a constant counterflow. Zeitschrift fuer Angewandte Mathematik und Physik (ZAMP) 64:1599–1607.  https://doi.org/10.1007/S00033-012-0298-5 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    McDonnell D (2012) An analysis of drug dissolution in vivo. Doctoral Thesis. Dublin Institute of Technology, Ireland.  https://doi.org/10.21427/D7T011
  3. 3.
    McDonnell D, Redmond B, Crane LJ (2015) Mass transfer from a vertical flat plate due to a constant upward flow. Zeitschrift fr Angewandte Mathematik und Mechanik (ZAMM) 95(1):111– 116MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    United States Pharmacopeia and National Formlary 39-NF34 (2016) The United States Pharmacopeial Convention, Rockwell, MD USAGoogle Scholar
  5. 5.
    Beyssac E, Lavigne J (2005) Dissolution study of active pharmaceutical ingredients using the flow through apparatus USP 4. Dissol Technol 12:23–25CrossRefGoogle Scholar
  6. 6.
    Singh I, Aboul-Enein HY (2006) Advantages of USP apparatus IV (flow-through cell apparatus) in dissolution studies. J Iran Chem Soc 3:220CrossRefGoogle Scholar
  7. 7.
    Fotaki N (2011) Flow-through cell apparatus (USP apparatus 4): operation and features. Dissol Technol 18:46–49CrossRefGoogle Scholar
  8. 8.
    D’Arcy DM, Liu B, Corrigan OI (2011) Investigating the effect of solubility and densitygradients on local hydrodynamics and drug dissolution in the USP 4 dissolution apparatus. Int J Pharm 419:175CrossRefGoogle Scholar
  9. 9.
    D’Arcy DM, Liu B, Bradley G, Healy AM, Corrigan OI (2010) Hydrodynamic and species transfer simulations in the USP 4 dissolution apparatus: considerations for dissolution in a low velocity pulsing flow. Pharm Res 27:246CrossRefGoogle Scholar
  10. 10.
    D’Arcy DM, Liu B, Persoons T, Corrigan OI (2011) Hydrodynamic complexity induced by the pulsing flow field in the USP dissolution apparatus 4. Dissol Technol 18:6–13CrossRefGoogle Scholar
  11. 11.
    Cammarn SR, Sakr A (2000) Predicting dissolution via hydrodynamics: salicylic acid tablets in flow through cell dissolution. Int J Pharm 201:199CrossRefGoogle Scholar
  12. 12.
    Kuiken HM (1968) An asymptotic solution for large Prandtl number free convection. J Eng Math 2:355CrossRefMATHGoogle Scholar
  13. 13.
    Squire HB (1938) ‘Modern developments in fluid dynamics’ in S. Goldstein. Oxford University Press, New YorkGoogle Scholar
  14. 14.
    Tani I (1949) On the solution of the laminar boundary layer equations. J Phys Soc Jpn 4:149MathSciNetCrossRefGoogle Scholar
  15. 15.
    Howarth L (1938) On the solution of the laminar boundary layer equations. Proc Roy Soc London A 164:547CrossRefMATHGoogle Scholar
  16. 16.
    Lévêque MA (1928) Les lois de la transmission de chaleur par convection. Ann Mines 13:201Google Scholar
  17. 17.
    Yoshida H, Kuwana A, Shibata H, Izutsu K, Goda Y (2016) Effects of pump pulsation on hydrodynamic properties and dissolution profiles in flow-through dissolution systems (USP 4). Pharm Res 33:1327.  https://doi.org/10.1007/s11095-016-1874-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Mechanical and Design EngineeringDublin Institute of TechnologyDublinIreland
  2. 2.School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
  3. 3.Institute for Numerical Computation and AnalysisDublinIreland
  4. 4.School of Mathematical SciencesDublin Institute of TechnologyDublinIreland

Personalised recommendations