Advertisement

Heat and Mass Transfer

, Volume 54, Issue 3, pp 697–713 | Cite as

Validation of a numerical method for interface-resolving simulation of multicomponent gas-liquid mass transfer and evaluation of multicomponent diffusion models

  • Mino Woo
  • Martin Wörner
  • Steffen Tischer
  • Olaf Deutschmann
Original

Abstract

The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.

List of symbols

ci

Molar concentration of species i (mol m−3)

cref

Reference concentration (mol m−3)

ct

Total molar concentration of mixture (mol m−3)

C

Concentration normalized by c ref (−)

Di , j

Fick diffusion coefficient in the GFL diffusivity matrix (m2 s−1)

Ði , j

Maxwell-Stefan diffusion coefficient for species pair i and j (m2 s−1)

Di , eff

Effective diffusivity of species i (m2 s−1)

f

Volume fraction of liquid phase (−)

Hi

Henry number of species i (−)

h

Length of computational domain (m)

ji ,  ji

Diffusive molar flux relative to molar-average velocity (mol m−2 s−1)

\( {j}_i^{\mathrm{V}},\kern0.5em {\mathbf{j}}_i^{\mathrm{V}} \)

Diffusive molar flux relative to volume-average velocity (mol m−2 s−1)

J

Species vector of diffusive molar fluxes, J = (j 1, j 2, …, j n − 1)T (mol m−2 s−1)

k

Reaction constant (m s−1)

m

Time step index (−)

Mi

Molecular weight of species i (g mol−1)

n

Number of species (−)

N

Molar flux (mol m−2 s−1)

Pei , j

Binary Péclet number (−)

Peref

Reference Péclet number (−)

ri

Reactive source term of species i in Eq. (5) (mol m−3 s−1)

\( {r}_i^{\mathrm{V}} \)

Reactive source term of species i in Eq. (6) (mol m−3 s−1)

\( {\dot{s}}_i \)

Reaction rate (mol m−2 s−1)

\( {\dot{S}}_i \)

Non-dimensional reaction rate (−)

t

Time (s)

ui

Partial velocity of species i (m s−1)

u ,  u

Molar-average velocity (m s−1)

uV ,  uV

Volume-average velocity (m s−1)

uM ,  uM

Mass-average velocity (m s−1)

\( {\overline{V}}_i \)

Partial molar volume of species i (m3 mol−1)

\( {\overline{V}}_{\mathrm{t}} \)

Total molar volume of mixture, \( {\overline{V}}_{\mathrm{t}}=1/{c}_{\mathrm{t}} \) (m3 mol−1)

xi

Mole fraction of species i (−)

z

Coordinate of one-dimensional problem (m)

Z

Non-dimensional coordinate, Z = z/L ref (−)

Greek symbols

δ

Degree of dilution (−)

ν

Stoichiometric coefficient (−)

ρi

Partial mass density of species i (kg m−3)

ρt

Total mass density (kg m−3)

θ

Non-dimensional time (−)

ωi

Mass fraction of species i (−)

Subscripts

eff

Effective

i

Species index

int

Interface

G

Gas phase

L

Liquid phase

m

Two-phase mixture quantity

ref

Reference

t

Total

0

Initial value

Superscripts

eq

Equilibrium

M

Mass average

V

Volume average

Abbreviations

CCDM

Continuous concentration diffusivity model

EDM

Effective diffusivity model

GFL

Generalized Fick law

MCM

Multicomponent model

MS

Maxwell-Stefan

NESM

Non-equilibrium stage model

Notes

Acknowledgements

We gratefully acknowledge the funding of this project by Helmholtz Energy Alliance “Energy Efficient Chemical Multiphase Processes” (HA-E-0004) and thank the Steinbeis GmbH & Co. KG für Technologietransfer (STZ 240 Reaktive Strömung) for a cost-free academic license of DETCHEM™.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Tryggvason G, Scardovelli R, Zaleski S (2011) Direct numerical simulations of gas-liquid multiphase flows. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  2. 2.
    Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886CrossRefGoogle Scholar
  3. 3.
    Günther A, Jhunjhunwala M, Thalmann M, Schmidt MA, Jensen KF (2005) Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 21:1547–1555CrossRefGoogle Scholar
  4. 4.
    Yue J, Luo LG, Gonthier Y, Chen GW, Yuan Q (2009) An experimental study of air-water Taylor flow and mass transfer inside square microchannels. Chem Eng Sci 64:3697–3708CrossRefGoogle Scholar
  5. 5.
    Haase S, Bauer T (2011) New method for simultaneous measurement of hydrodynamics and reaction rates in a mini-channel with Taylor flow. Chem Eng J 176–177:65–74CrossRefGoogle Scholar
  6. 6.
    Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRefMATHGoogle Scholar
  7. 7.
    Sussman M, Smereka P, Osher S (1994) A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. J Comput Phys 114:146–159CrossRefMATHGoogle Scholar
  8. 8.
    Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100:25–37CrossRefMATHGoogle Scholar
  9. 9.
    Bothe D, Kröger M, Alke A, Warnecke H-J (2009) VOF-based simulation of reactive mass transfer across deformable interfaces. Prog Comput Fluid Dy 9:325–331MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bothe D, Kröger M, Warnecke H-J (2011) A VOF-Based Conservative Method for the Simulation of Reactive Mass Transfer from Rising Bubbles. Fluid Dyn Mater Proc 7:303–316Google Scholar
  11. 11.
    Kenig EY, Ganguli AA, Atmakidis T, Chasanis P (2011) A novel method to capture mass transfer phenomena at free fluid-fluid interfaces. Chem Eng Process 50:68–76CrossRefGoogle Scholar
  12. 12.
    Bothe D, Fleckenstein S (2013) A Volume-of-Fluid-based method for mass transfer processes at fluid particles. Chem Eng Sci 101:283–302CrossRefGoogle Scholar
  13. 13.
    Eisenschmidt K, Ertl M, Gomaa H, Kieffer-Roth C, Meister C, Rauschenberger P, Reitzle M, Schlottke K, Weigand B (2016) Direct numerical simulations for multiphase flows: An overview of the multiphase code FS3D. Appl Math Comput 272:508–517MathSciNetGoogle Scholar
  14. 14.
    Haroun Y, Legendre D, Raynal L (2010) Volume of fluid method for interfacial reactive mass transfer: Application to stable liquid film. Chem Eng Sci 65:2896–2909CrossRefGoogle Scholar
  15. 15.
    Marschall H, Hinterberger K, Schuler C, Habla F, Hinrichsen O (2012) Numerical simulation of species transfer across fluid interfaces in free-surface flows using OpenFOAM. Chem Eng Sci 78:111–127CrossRefGoogle Scholar
  16. 16.
    Deising D, Marschall H, Bothe D (2016) A unified single-field model framework for Volume-Of-Fluid simulations of interfacial species transfer applied to bubbly flows. Chem Eng Sci 139:173–195CrossRefGoogle Scholar
  17. 17.
    Petera J, Weatherley LR (2001) Modelling of mass transfer from falling droplets. Chem Eng Sci 56:4929–4947CrossRefGoogle Scholar
  18. 18.
    Bothe D, Koebe M, Wielage K, Prüss J, Warnecke H-J (2004) Direct numerical simulation of mass transfer between rising gas bubbles and water. In: Sommerfeld M (ed) Bubbly flows Analysis, modelling and calculation. Springer, Berlin, pp 159–174CrossRefGoogle Scholar
  19. 19.
    Yang C, Mao Z-S (2005) Numerical simulation of interphase mass transfer with the level set approach. Chem Eng Sci 60:2643–2660CrossRefGoogle Scholar
  20. 20.
    Onea A, Wörner M, Cacuci DG (2009) A qualitative computational study of mass transfer in upward bubble train flow through square and rectangular mini-channels. Chem Eng Sci 64:1416–1435CrossRefGoogle Scholar
  21. 21.
    Hayashi K, Tomiyama A (2011) Interface Tracking Simulation of Mass Transfer from a Dissolving Bubble. J Comput Multiphase Flow 3:247–262MathSciNetCrossRefGoogle Scholar
  22. 22.
    Banerjee R (2007) A numerical study of combined heat and mass transfer in an inclined channel using the VOF multiphase model. Numer Heat Transfer, Part A 52:163–183CrossRefGoogle Scholar
  23. 23.
    Schlottke J, Weigand B (2008) Direct numerical simulation of evaporating droplets. J Comput Phys 227:5215–5237MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hassanvand A, Hashemabadi SH (2011) Direct numerical simulation of interphase mass transfer in gas-liquid multiphase systems. Int Commun Heat Mass Transfer 38:943–950CrossRefGoogle Scholar
  25. 25.
    Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. John Wiley, New YorkGoogle Scholar
  26. 26.
    Taylor R, Krishna R (1993) Multicomponent mass transfer. Wiley, New YorkGoogle Scholar
  27. 27.
    Bird RB, Klingenberg DJ (2013) Multicomponent diffusion-A brief review. Adv Water Resour 62:238–242CrossRefGoogle Scholar
  28. 28.
    Curtiss CF, Bird RB (1999) Multicomponent diffusion. Ind Eng Chem Res 38:2515–2522CrossRefGoogle Scholar
  29. 29.
    Matuszak D, Donohue MD (2005) Inversion of multicomponent diffusion equations. Chem Eng Sci 60:4359–4367CrossRefGoogle Scholar
  30. 30.
    Merk HJ (1959) The macroscopic equations for simultaneous heat and mass transfer in isotropic, continuous and closed systems. Appl Sci Res 8:73–99MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Gandhi KS (2012) Use of Fick's law and Maxwell-Stefan equations in computation of multicomponent diffusion. AIChE J 58:3601–3605CrossRefGoogle Scholar
  32. 32.
    Nauman EB, Savoca J (2001) An engineering approach to an unsolved problem in multicomponent diffusion. AIChE J 47:1016–1021CrossRefGoogle Scholar
  33. 33.
    Mazumder S (2006) Critical assessment of the stability and convergence of the equations of multi-component diffusion. J Comput Phys 212:383–392CrossRefMATHGoogle Scholar
  34. 34.
    Rehfeldt S, Stichlmair J (2007) Measurement and calculation of multicomponent diffusion coefficients in liquids. Fluid Phase Equilibr 256:99–104CrossRefGoogle Scholar
  35. 35.
    Toor HL (1964) Solution of the Linearized Equations of Multicomponent Mass Transfer: I. AIChE J 10:448–455CrossRefGoogle Scholar
  36. 36.
    Toor HL (1964) Solution of the Linearized Equations of Multicomponent Mass Transfer: II. Matrix Methods. AIChE J 10:460–465CrossRefGoogle Scholar
  37. 37.
    Padoin N, Dal'Toe ATO, Rangel LP, Ropelato K, Soares C (2014) Heat and mass transfer modeling for multicomponent multiphase flow with CFD. Int J Heat Mass Transf 73:239–249CrossRefGoogle Scholar
  38. 38.
    Wilke CR (1950) Diffusional Properties of Multicomponent Gases. Chem Eng Prog 46:95–104Google Scholar
  39. 39.
    Kumar A, Mazumder S (2008) Assessment of various diffusion models for the prediction of heterogeneous combustion in monolith tubes. Comput Chem Eng 32:1482–1493CrossRefGoogle Scholar
  40. 40.
    Lutz AE, Kee RJ, Grcar JF, Rupley FM (1997) OPPDIF: A Fortran program for computing opposed-flow diffusion flames. Sandia National Labs, Livermore SAND-96-8243CrossRefGoogle Scholar
  41. 41.
    Warnatz J, Maas U, Dibble RW (2006) Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 4th edn. Springer, Berlin, New YorkMATHGoogle Scholar
  42. 42.
    Kee RJ, Coltrin ME, Glarborg P (2003) Chemically reacting flow: theory and practice. Wiley-Interscience, HobokenCrossRefGoogle Scholar
  43. 43.
    Hayes RE, Liu B, Moxom R, Votsmeier M (2004) The effect of washcoat geometry on mass transfer in monolith reactors. Chem Eng Sci 59:3169–3181CrossRefGoogle Scholar
  44. 44.
    Karadeniz H, Karakaya C, Tischer S, Deutschmann O (2013) Numerical modeling of stagnation-flows on porous catalytic surfaces: CO oxidation on Rh/Al2O3. Chem Eng Sci 104:899–907CrossRefGoogle Scholar
  45. 45.
    Salmi T, Warna J (1991) Modeling of Catalytic Packed-Bed Reactors – Comparison of Different Diffusion-Models. Comput Chem Eng 15:715–727CrossRefGoogle Scholar
  46. 46.
    Kee RJ, Dixon-Lewis G, Warnatz J, Coltrin ME, Miller JA (1986) A FORTRAN computer code package for the evaluation of gas-phase, multicomponent transport properties. Sandia National Labs, Livermore SAND86-8246Google Scholar
  47. 47.
    Desilets M, Proulx P, Soucy G (1997) Modeling of multicomponent diffusion in high temperature flows. Int J Heat Mass Transf 40:4273–4278CrossRefMATHGoogle Scholar
  48. 48.
    Kenig EY, Kholpanov LP (1992) Simultaneous Mass and Heat-Transfer with Reactions in a Multicomponent, Laminar, Falling Liquid-Film. Chem Eng J Biochem Eng J 49:119–126Google Scholar
  49. 49.
    Kenig EY, Butzmann F, Kucka L, Gorak A (2000) Comparison of numerical and analytical solutions of a multicomponent reaction-mass-transfer problem in terms of the film model. Chem Eng Sci 55:1483–1496CrossRefGoogle Scholar
  50. 50.
    Kenig EY, Schneider R, Gorak A (2001) Multicomponent unsteady-state film model: a general analytical solution to the linearized diffusion-reaction problem. Chem Eng J 83:85–94CrossRefGoogle Scholar
  51. 51.
    Chasanis P, Brass M, Kenig EY (2010) Investigation of multicomponent mass transfer in liquid-liquid extraction systems at microscale. Int J Heat Mass Transf 53:3758–3763CrossRefMATHGoogle Scholar
  52. 52.
    Banerjee R (2008) Turbulent conjugate heat and mass transfer from the surface of a binary mixture of ethanol/iso-octane in a countercurrent stratified two-phase flow system. Int J Heat Mass Transf 51:5958–5974CrossRefMATHGoogle Scholar
  53. 53.
    Haelssig JB, Tremblay AY, Thibault J, Etemad SG (2010) Direct numerical simulation of interphase heat and mass transfer in multicomponent vapour-liquid flows. Int J Heat Mass Transf 53:3947–3960CrossRefMATHGoogle Scholar
  54. 54.
    Cui XT, Li XG, Sui H, Li H (2012) Computational fluid dynamics simulations of direct contact heat and mass transfer of a multicomponent two-phase film flow in an inclined channel at sub-atmospheric pressure. Int J Heat Mass Transf 55:5808–5818CrossRefGoogle Scholar
  55. 55.
    Poling BE, Prausnitz JM, O'Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  56. 56.
    Dal'Toe ATO, Padoin N, Ropelato K, Soares C (2015) Cross diffusion effects in the interfacial mass and heat transfer of multicomponent droplets. Int J Heat Mass Transf 85:830–840CrossRefGoogle Scholar
  57. 57.
    Sabisch W (2000) Dreidimensionale numerische Simulation der Dynamik von aufsteigenden Einzelblasen und Blasenschwärmen mit einer Volume-of-Fluid-Methode. Forschungszentrum Karlsruhe Wissenschaftliche Berichte, FZKA 6478, KarlsruheGoogle Scholar
  58. 58.
    Sabisch W, Wörner M, Grötzbach G, Cacuci DG (2001) Three-dimensional simulation of rising individual bubbles and swarms of bubbles by a volume-of-fluid method. Chem Ing Tech 73:368–373CrossRefGoogle Scholar
  59. 59.
    Kececi S, Wörner M, Onea A, Soyhan HS (2009) Recirculation time and liquid slug mass transfer in co-current upward and downward Taylor flow. Catal Today 147S:S125–S131CrossRefGoogle Scholar
  60. 60.
    Öztaskin MC, Wörner M, Soyhan HS (2009) Numerical investigation of the stability of bubble train flow in a square minichannel. Phys Fluids 21:042108.  https://doi.org/10.1063/1.3101146 CrossRefMATHGoogle Scholar
  61. 61.
    Patankar SV (1980) Numerical heat transfer and fluid flow Hemisphere. Pub. Corp. McGraw-Hill, WashingtonMATHGoogle Scholar
  62. 62.
    Davidson MR, Rudman M (2002) Volume-of-fluid calculation of heat or mass transfer across deforming interfaces in two-fluid flow. Numer Heat Transfer, Part B 41:291–308CrossRefGoogle Scholar
  63. 63.
    Carty R, Schrodt T (1975) Concentration Profiles in Ternary Gaseous Diffusion. Ind Eng Chem Fundam 14:276–278CrossRefGoogle Scholar
  64. 64.
    Newman J (2009) Stefan-Maxwell mass transport. Chem Eng Sci 64:4796–4803CrossRefGoogle Scholar
  65. 65.
    Deutschmann O, Tischer S, Correa C, Chatterjee J, Kleditzsch S, Janardhanan V, Mladenov N, Minh HD, Karadeniz H, Hettel M (2014) DETCHEM Software package, 2.5 ed, www.detchem.de, KarlsruheGoogle Scholar
  66. 66.
    Irandoust S, Ertle S, Andersson B (1992) Gas-Liquid Mass-Transfer in Taylor Flow through a Capillary. Can J Chem Eng 70:115–119CrossRefGoogle Scholar
  67. 67.
    Crank J (1975) The mathematics of diffusion, 2d edn. Clarendon Press, OxfordMATHGoogle Scholar
  68. 68.
    Krishnamurthy R, Taylor R (1985) A Nonequilibrium Stage Model of Multicomponent Separation Processes. Part I: Model Description and Method of Solution. AIChE J 31:449–456Google Scholar
  69. 69.
    Hiller C, Buck C, Ehlers C, Fieg G (2010) Nonequilibrium stage modelling of dividing wall columns and experimental validation. Heat Mass Transf 46:1209–1220CrossRefGoogle Scholar
  70. 70.
    Kenig E, Gorak A (1995) A Film Model-Based Approach for Simulation of Multicomponent Reactive Separation. Chem Eng Process 34:97–103CrossRefGoogle Scholar
  71. 71.
    Cussler EL (2009) Diffusion: mass transfer in fluid systems, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  72. 72.
    Sander R (2015) Compilation of Henry's law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981MathSciNetCrossRefGoogle Scholar
  73. 73.
    Chasanis P, Lautenschleger A, Kenig EY (2010) Numerical investigation of carbon dioxide absorption in a falling-film micro-contactor. Chem Eng Sci 65:1125–1133CrossRefGoogle Scholar
  74. 74.
    Machado RM (2007) Fundamentals of Mass Transfer and Kinetics for the Hydrogenation of Nitrobenzene to Aniline. ALR Application Note, Mettler-Toledo AutoChem. Inc, ColumbiaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Catalysis Research and TechnologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations