Skip to main content
Log in

Transient performance and temperature field of a natural convection air dehumidifier loop

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C :

Concentration (kgsalt/kgsolution)

down:

Lower horizontal level

P :

Pressure (kPa)

T :

Temperature (°C)

up:

Upper horizontal level

\(\dot{V}\) :

Volume flow rate (l/h)

AC:

Air conditioning

ASTM:

American society of testing machines

CaCl2 :

Calcium chloride

HFM:

Hollow fiber membrane

IAQ:

Indoor air quality

LAMEE:

Liquid to air membrane energy exchanger

LDAC:

Liquid desiccant air conditioning system

LiBr:

Lithium bromide

LiCl:

Lithium chloride

MgCl2 :

Magnesium chloride

NCLD:

Natural convection liquid desiccant

PE:

Poly ethylene

PIV:

PARTICLE image velocimetry

PP:

Poly propylene

PVDF:

Poly vinylidene fluoride

RTD:

Resistance temperature detector

TEG:

Tri-ethylene glycol

db:

Dry bulb

wb:

Wet bulb

References

  1. Zhang LZ (2008) Total heat recovery: heat and moisture recovery from ventilation air. Nova Science Publishing Co., New York

    Google Scholar 

  2. Abdel-Salam MRH, Fauchoux M, Ge G, Besant RW, Simonson CJ (2014) Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: a review. Appl Energy 127:202–218

    Article  Google Scholar 

  3. ENPI—Neighborhood—Mediterranean and Eastern Europe. Identification mission for the mediterranean solar plan. Final Report, January 2010, FWC beneficiaries Lot4—No. 008/168828; January 2010. http://ec.europa.eu/energy/international/international_cooperation/doc/2010_01_solar_plan_report.pdf

  4. Ge G, Abdel-Salam MRH, Besant RW, Simonson CJ (2013) Research and applications of liquid-to-air membrane energy exchangers in building HVAC systems at university of Saskatchewan: a review. Renew Sustain Energy Rev 26:464–479

    Article  Google Scholar 

  5. World energy outlook 2012: executive summary, International energy agency, IEA http://www.worldenergyoutlook.org (2012)

  6. Al-Abidi AA, Mat SB, Sopian K, Sulaiman MY, Lim CH, Abdulrahman Th (2012) Review of thermal energy storage for air conditioning systems. Renew Sustain Energy Rev 16:5802–5819

    Article  Google Scholar 

  7. Hao X, Zhu C, Lin Y, Wang H, Zhang G, Chen Y (2013) Optimizing the pad thickness of evaporative air-cooled chiller for maximum energy saving. Energy Build 61:146–152

    Article  Google Scholar 

  8. Awbi HB (1998) Chapter 7—ventilation. Renew Sustain Energy Rev 2:157–188

    Article  Google Scholar 

  9. Spengler JD, Sexton K (1983) Indoor air pollution: a public health perspective. Science 221(4605):9–17

    Article  Google Scholar 

  10. Dimitroulopoulou C (2012) Ventilation in Europe and wellings: a review. Build Environ 47:109–125

    Article  Google Scholar 

  11. Simonson C (2005) Energy consumption and ventilation performance of a naturally ventilated ecological house in a cold climate. Energy Build 37:23–35

    Article  Google Scholar 

  12. Abdel-Salam AH, Simonson CJ (2014) Annual evaluation of energy, environmental and Economic performances of a membrane liquid desiccant air conditioning system with/without ERV. Appl Energy 116:134–148

    Article  Google Scholar 

  13. Abdel-Salam AH, Ge G, Simonson CJ (2013) Performance analysis of a membrane liquid desiccant air-conditioning system. Energy Build 62:559–569

    Article  Google Scholar 

  14. Stritih U, Butala V (2010) Experimental investigation of energy saving in buildings with PCM cold storage. Int J Refrig 33:1676–1683

    Article  Google Scholar 

  15. Abdel-Salam AH, Ge G, Simonson CJ (2014) Thermo-economic performance of a solar membrane liquid desiccant air conditioning system. Sol Energy 102:56–73

    Article  Google Scholar 

  16. Budaiwi I, Abdou A (2013) HVAC system operational strategies for reduced energy consumption in buildings with intermittent occupancy: the case of mosques. Energy Convers Manag 73:37–50

    Article  Google Scholar 

  17. Bergero S, Chiari A (2011) On the performances of a hybrid air-conditioning system in different climatic conditions. Energy 36:5261–5273

    Article  Google Scholar 

  18. Sullivan C (2011) Liquid desiccant dehumidification for challenging environments. Eng Syst 28(11):38

    Google Scholar 

  19. Bergero S, Chiari A (2010) Performance analysis of a liquid desiccant and membrane contactor hybrid air-conditioning system. Energy Build 42:1976–1986

    Article  Google Scholar 

  20. Isetti C et al (2013) Three-fluid membrane contactors for improving the energy efficiency of refrigeration and air-handling systems. Int J Ambient Energy 34:181–194

    Article  Google Scholar 

  21. Fazilati MA et al (2016) Natural induced flow due to concentration gradient in a liquid desiccant air dehumidifier. Appl Therm Eng 105:105–117

    Article  Google Scholar 

  22. Namvar R, Pyra D, Ge G, Simonson CJ, Besant RW (2012) Transient characteristics of a liquid-to-air membrane energy exchanger (LAMEE) experimental data with correlations. Int J Heat Mass Transf 55:6682–6694

    Article  Google Scholar 

  23. Namvar R, Ge G, Simonson CJ, Besant RW (2013) Transient heat and moisture transfer characteristics of a liquid-to-air membrane energy exchanger (LAMEE) model verification and extrapolation. Int J Heat Mass Transf 66:757–771

    Article  Google Scholar 

  24. Namvar R, Pyra D, Ge G, Simonson CJ, Besant RW (2012) Transient characteristics of a liquid-to-air membrane energy exchanger (LAMEE): experimental data with correlations. Int J Heat Mass Transf 55:6682–6694

    Article  Google Scholar 

  25. Afshin M, Simonson CJ, Besant RW (2010) Crystallization limits of LiCl-water and MgCl2-water salt solutions as operating liquid desiccant in the RAMEE system. ASHRAE Trans 116:494–506

    Google Scholar 

  26. Charles NT, Johnson DW (2008) The occurrence and characterization of fouling during membrane evaporative cooling. J Membr Sci 319:44–53

    Article  Google Scholar 

  27. Lowenstein A (2008) Review of liquid desiccant technology for HVAC applications. HVAC&R Res 14(6):819–839

    Article  Google Scholar 

  28. Conde MR (2004) Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. Int J Therm Sci 43(4):367–382

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Fazilati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazilati, M.A., Sedaghat, A. & Alemrajabi, AA. Transient performance and temperature field of a natural convection air dehumidifier loop. Heat Mass Transfer 53, 2287–2296 (2017). https://doi.org/10.1007/s00231-017-1984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-1984-9

Keywords

Navigation