Skip to main content
Log in

A numerical investigation of the diesel particle filter regeneration process under temperature pulse conditions

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A one-dimensional transient diesel particle filter (DPF) model is applied to study DPF regeneration performance. Numerical simulations are performed to predict the effects of various factors influencing regeneration performance under temperature pulse conditions, and the regeneration performances of three typical DPFs are compared and analyzed. Numerical results indicate that the thermal conductivity characteristics of DPF configurations can greatly affect soot oxidation, which in turn influences the regeneration process. The transition points of the regeneration flow rate indicate a balance between its promotion of the regeneration process and retardation owing to cooling effects. The sensitive ranges of soot loading, oxygen concentration, and inlet temperature are observed to provide a reference for controlling DPF regeneration. The multi-step exhaust condition is employed to control DPF regeneration. It was found that a transient increase in the flow rate is more effective at reducing the peak temperature and peak temperature gradient than a transient decrease of oxygen concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(a\) :

Channel width (mm)

\(C_{\text{p}}\) :

Specific heat [J/(kg K)]

D :

Filter diameter (mm)

\(E\) :

Activation energy (kJ/mol)

\(F\) :

Friction factor in channels (28.454)

\(h\) :

Heat transfer coefficient [W/(m2 K)]

\(\Delta H\) :

Reaction enthalpy of soot oxidation (J/mol)

\(k\) :

Collision frequency factor [1.0 m/(s K)]

\(K\) :

Filtration permeability (m2)

L :

Filter length (mm)

\(M_{{{\text{O}}_{ 2} }}\) :

Molecular weight of oxygen (kg/mol)

\(M_{\text{C}}\) :

Molecular weight of carbon (kg/mol)

\(p\) :

Gas pressure (Pa)

Q react :

The reaction heat from soot oxidation (W/m2)

\(R\) :

Universal gas constant [J/(mol K)]

\(S_{\text{p}}\) :

Specific area of soot deposit layer (m−1)

\(t\) :

Regeneration time (s)

\(w\) :

Substrate wall thickness (mm)

x :

Axial position in channel (mm)

\(Y_{{{\text{O}}_{ 2} }}\) :

Oxygen concentration (mole fraction, mol/mol)

\(v\) :

Axial gas velocity in channel (m/s)

\(\rho\) :

Bulk density (kg/m3)

\(\delta\) :

Soot layer thickness (mm)

\(\mu\) :

Gas dynamic viscosity (Pa s)

\(\lambda\) :

Thermal conductivity [W/(m K)]

1:

Inlet channel

2:

Outlet channel

g:

Gas phase

p:

Soot layer

w:

Substrate

References

  1. Mamakos A, Martini G, Manfredi U (2013) Assessment of the legislated particle number measurement procedure for a Euro 5 and a Euro 6 compliant diesel passenger cars under regulated and unregulated conditions. J Aerosol Sci 55:31–47. doi:10.1016/j.jaerosci.2012.07.012

    Article  Google Scholar 

  2. Obeid E, Lizarraga L, Tsampas MN, Cordier A, Boréave A, Steil MC, Blanchard G, Pajot K, Vernoux P (2014) Continuously regenerating diesel particulate filters based on ionically conducting ceramics. J Catal 309:87–96. doi:10.1016/j.jcat.2013.09.004

    Article  Google Scholar 

  3. Yu M, Luss D, Balakotaiah V (2013) Analysis of flow distribution and heat transfer in a diesel particulate filter. Chem Eng J 226:68–78. doi:10.1016/j.cej.2013.04.026

    Article  Google Scholar 

  4. Tian J, Yl Cheng, Liu ZC, Wang D, Liu JW (2013) Carrier temperature controlling strategies of diesel particulate filter during drop-to-idle regeneration process. Trans CSICE 31:154–158

    Google Scholar 

  5. Zheng M, Wang D, Reader GT (2005) Boundary layer enhanced thermal recuperation for diesel particulate filter regeneration under a periodic flow reversal operation. SAE technical paper 2005-01-0951

  6. Chen K, Luss D (2011) Temperature excursions in diesel particulate filters: response to shift to idle. Ind Eng Chem Res 50:832–842

    Article  Google Scholar 

  7. Chen K, Martirosyan KS, Luss D (2010) Temperature excursions during soot combustion in a diesel particulate filter (DPF). Ind Eng Chem Res 49:10358–10363

    Article  Google Scholar 

  8. Yu M, Luss D, Balakotaiah V (2013) Regeneration modes and peak temperatures in a diesel particulate filter. Chem Eng J 232:541–554. doi:10.1016/j.cej.2013.08.006

    Article  Google Scholar 

  9. Martirosyan KS, Chen K, Luss D (2010) Behavior features of soot combustion in diesel particulate filter. Chem Eng Sci 65:42–46. doi:10.1016/j.ces.2009.01.058

    Article  Google Scholar 

  10. Bissett EJ (1984) Mathematical model of the thermal regeneration of a wall-flow monolith diesel particulate filter. Chem Eng Sci 39:1233–1244

    Article  Google Scholar 

  11. Koltsakis GC, Stamatelos AM (1997) Modes of catalytic regeneration in diesel particulate filters. Ind Eng Chem Res 36:4155–4165

    Article  Google Scholar 

  12. Haralampous OA, Koltsakis GC (2004) Oxygen diffusion modeling in diesel particulate filter regeneration. AlChE J 50:2008–2019

    Article  Google Scholar 

  13. Stratakis GA, Pontikakis GN, Stamatelos AM (2004) Experimental validation of a fuel additive assisted regeneration model in silicon carbide diesel filters. Proc Inst Mech Eng Part D J Automob Eng 218:729–744

    Article  Google Scholar 

  14. Dardiotis CK, Haralampous OA, Koltsakis GC (2006) Catalytic oxidation performance of wall-flow versus flow-through monoliths for diesel emissions control. Ind Eng Chem Res 45:3520–3530

    Article  Google Scholar 

  15. Zheng H, Keith JM (2004) New design for efficient diesel particulate trap regeneration. AIChE J 50:184–191

    Article  Google Scholar 

  16. Zheng H, Keith JM (2004) Ignition analysis of wall-flow monolith diesel particulate filters. Catal Today 98:403–412. doi:10.1016/j.cattod.2004.08.008

    Article  Google Scholar 

  17. Ohno K, Shimato K, Taoka N, Santae H, Ninomiya T, Komori T, Salvat O (2000) Characterization of SiC-DPF for passenger car. SAE technical paper 2000-01-0185. doi: 10.4271/2000-01-0185

  18. Tsuneyoshi K, Yamamoto K (2012) A study on the cell structure and the performances of wall-flow diesel particulate filter. Energy 48:492–499. doi:10.1016/j.energy.2012.10.007

    Article  Google Scholar 

  19. Yamamoto K, Oohori S, Yamashita H, Daido S (2009) Simulation on soot deposition and combustion in diesel particulate filter. Proc Combust Inst 32:1965–1972. doi:10.1016/j.proci.2008.06.081

    Article  Google Scholar 

  20. Lee SJ, Jeong SJ, Kim WS (2009) Numerical design of the diesel particulate filter for optimum thermal performances during regeneration. Appl Energy 86:1124–1135. doi:10.1016/j.apenergy.2008.07.002

    Article  Google Scholar 

  21. Van Settena BAAL, Makkeea M (2001) Science and technology of catalytic diesel particulate filters. Cat Rev Sci Eng 43:489–564

    Article  Google Scholar 

  22. Zhan R, Huang Y, Khair M (2006) Methodologies to control DPF uncontrolled regenerations. SAE technical paper 2006-01-1090

  23. Koltsakis GC, Haralampous OA, Samaras ZC, Kraemer L, Heimlich F, Behnk K (2007) Control strategies for peak temperature limitation in DPF regeneration supported by validated modeling. SAE technical paper 2007-01-1127

  24. Konstandopoulos AG, Kostoglou M, Skaperdas E, Papaioannou E, Zarvalis D, Kladopoulou E (2000) Fundamental studies of diesel particulate filters: transient loading, regeneration and aging. SAE technical paper 2000-01-1016

  25. Huynh CT, Johnson JH, Yang SL, Bagley ST, Warner JR (2003) A one-dimensional computational model for studying the filtration and regeneration characteristics of a catalyzed wall-flow diesel particulate filter. SAE technical paper 2003-01-0841

  26. Zheng M, Banerjee S (2009) Diesel oxidation catalyst and particulate filter modeling in active—flow configurations. Appl Therm Eng 29:3021–3035. doi:10.1016/j.applthermaleng.2009.04.017

    Article  Google Scholar 

  27. Lance MJ, Sluder CS, Wang H, Storey JME (2009) Direct measurement of EGR cooler deposit thermal properties for improved understanding of cooler fouling. SAE technical paper 2009-01-1461

  28. Miyairi Y, Miwa S, Abe F, Xu Z, Nakasuji Y (2001) Numerical study on forced regeneration of wall-flow diesel particulate filters. SAE technical paper 2001-01-0912

Download references

Acknowledgments

This work was supported by (1) The National Natural Science Foundation of China (51676167); (2) The Chunhui Plan of the Ministry of Education of China (Z2014058); (3) The industry cluster project for electronic engine control systems and after treatment systems of Chengdu, China ([2013]265). (4) Research Project of Key Laboratory of Fluid and Power Machinery (Xihua University), Ministry of Education (SZJJ2016-005); (5) Science and Technology Department of Sichuan Province (2015TD0021); (6) The Innovation Foundation of Xihua University (YCJJ2015040, YCJJ2016087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Zhang, J., Chen, C. et al. A numerical investigation of the diesel particle filter regeneration process under temperature pulse conditions. Heat Mass Transfer 53, 1589–1602 (2017). https://doi.org/10.1007/s00231-016-1924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1924-0

Keywords

Navigation