Skip to main content
Log in

Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of −30 to −20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from −30 to −20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A:

Annular flow (/)

c:

Specific heat (kJ/kg K)

d:

Diameter (m)

D:

Dry-out (/)

Ffl :

Fluid dependent parameter in Kandlikar’s correlation

G:

Mass flux (kg/m2 s)

h:

Heat transfer coefficient (kW/m2 K)

i:

Enthalpy (kJ/kg)

ir :

Evaporation latent heat (kJ/kg)

I:

Intermittent flow (/)

Δi:

Enthalpy difference (kJ/kg)

k:

Thermal conductivity (kW/m K)

L:

Test section length (m)

M:

Mass flow rate, Mist flow (kg/h) (/)

q:

Heat flux (kW/m2)

Q:

Heat capacity (kW)

P:

Pressure (kPa)

S:

Stratified flow (/)

SW:

Stratified-wavy flow (/)

Slug:

Slug flow (/)

T:

Temperature (°C)

x:

Vapor quality

Bo:

Boiling number

Co:

Convection number

bottom:

Bottom

CBD:

Convective boiling

e:

Evaporation

f:

Liquid

i:

Inner

in:

Inlet

le:

Left

loc:

Local

NBD:

Nucleate boiling

o:

Outer

out:

Outlet

r:

Refrigerant

ri:

Right

s:

Secondary fluid

sc:

Subcooled

sub:

Subsection

top:

Top

wi:

Wall inner

wo:

Wall outer

References

  1. Oh HK, Son CH (2011) Flow boiling heat transfer and pressure drop characteristics of CO2 in horizontal tube of 4.57-mm inner diameter. Appl Therm Eng 31:163–172

    Article  Google Scholar 

  2. Kim MS, Cho JM (2007) Experimental studies on the evaporative heat transfer and pressure drop of CO2 in smooth and micro-fin tubes of the diameters of 5 and 9.52 mm. Int J Refrig 30(6):986–994

    Article  Google Scholar 

  3. Yoon SH, Kim MS et al (2004) Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development. Int J Refrig 27(2):111–119

    Article  Google Scholar 

  4. Yun R, Kim Y, Kim MS, Choi Y (2003) Boiling heat transfer and dry-out phenomenon of CO2 in a horizontal smooth tube. Int J Heat Mass Transf 46(13):2353–2361

    Article  Google Scholar 

  5. Zhao X, Bansal PK (2007) Flow boiling heat transfer characteristics of CO2 low temperatures. Int J Refrig 30(6):937–945

    Article  Google Scholar 

  6. Bredesen AM, Hafner AH, Pettersen J, Neksa P, Aflekt K (1997) Heat transfer and pressure drop for in-tube evaporation of CO2. In: IIF-IIR-Commission B1, with E1 & E2. College Park, pp 35–49

  7. Park CH, Hrnjak PS (2005) Flow boiling heat transfer of CO2 at low temperatures in a horizontal smooth tube. J Heat Transf 127(12):1305–1312

    Article  Google Scholar 

  8. Zhao X, Bansal PK (2009) Experimental investigation on flow boiling heat transfer of CO2 at low temperatures. Heat Transf Eng 30(1–2):2–11

    Article  Google Scholar 

  9. Ducoulombier M, Colasson S, Bonjour J, Haberschill P (2011) Carbon dioxide flow boiling in a single microchannel-Part II: heat transfer. Exp Therm Fluid Sci 35:597–611

    Article  Google Scholar 

  10. Hihara E, Tanaka S (2000) Boiling heat transfer of carbon dioxide in horizontal tubes. In: Proceedings of the 4th IIR Gustav Lorentzen Conference on Natural Working Fluids. pp 279–284

  11. Wattelet JP, Chato JC, Souza AL, Christoffersen BR (1994) Evaporative characteristics of R-12, R-134a, and a mixture at low mass fluxes. ASHRAE Trans. 94(Part 1):603–615

    Google Scholar 

  12. Jung DS, McLinden M, Radermacher R, Didion D (1989) A study of flow boiling heat transfer with refrigerant mixtures. Int J Heat Mass Transf 32(9):1751–1764

    Article  Google Scholar 

  13. Choi K-II, Pamitran AS, Oh J-T (2007) Two-phase flow heat transfer of CO2 vaporization in smooth horizontal minichannels. Int J Refrig 30:767–777

    Article  Google Scholar 

  14. Fang X, Zhou Z, Li D (2013) Review of correlations of flow boiling heat transfer coefficients for carbon dioxide. Int J Refrig 36(8):2017–2039

    Article  Google Scholar 

  15. Lee SY, Kim BJ, Kim MH (1993) Two-phase flow heat transfer. Dae-Young Sa, Korea

  16. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17

    Article  Google Scholar 

  17. Wojtan L, Ursenbacher T, Thome JR (2005) Investigation of flow boiling in horizontal tubes: part I—a new diabatic two-phase flow pattern map. Int J Heat Mass Transf 48(14):2955–2969

    Article  Google Scholar 

  18. Kattan N, Thome JR, Favrat D (1998) Flow boiling in horizontal tubes. Part 1: development of a diabatic two-phase flow pattern map. J Heat Transf 120(1):140–147

    Article  Google Scholar 

  19. Thome JR, Cheng L, Ribatski G, Wojtan L (2006) New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes. Int J Heat Mass Transf 49(21–22):4082–4094

    MATH  Google Scholar 

  20. Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev 5(3):322–329

    Article  Google Scholar 

  21. Gungor KE, Winterton RHS (1986) A general correlation for flow boiling in tubes and annuli. Int J Heat Mass Transf 29(3):351–358

    Article  MATH  Google Scholar 

  22. Kandlikar SG (1990) A general correlation for saturated two-phase flow boiling horizontal and vertical tubes. J Heat Transf 112(1):219–228

    Article  Google Scholar 

  23. Kenning DBR, Cooper MG (1989) Saturated flow boiling of water in vertical tubes. Int J Heat Mass Transf 32(3):445–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hyo Son.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, JI., Son, CH., Jung, SH. et al. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube. Heat Mass Transfer 53, 1631–1642 (2017). https://doi.org/10.1007/s00231-016-1922-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1922-2

Keywords

Navigation