Skip to main content

Investigation and experimental analysis of the bubble departure diameter in pure liquids on horizontal cylindrical heater


In this study, partial pool boiling heat transfer and bubble departure diameter on horizontal cylindrical heater in heat flux range between 103 and 105 w m−2 were investigated. Pure liquid water, Ethanol and Acetone were utilized as the fluids for the system. Aluminum, stainless steel 316A, copper and brass were considered as the materials for the heater’s surface rod. Different degrees of roughness were applied for copper and aluminum surface. Bubble departure diameter and heat transfer coefficients were chosen for the system measurement. The empirical model for bubble departure diameter was estimated by using experimental data. This model is based on dimensionless numbers that through which experimental data are shown from literature and the present the study is in good agreement with the model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


A :

Area (m−2)

Cp :

Specific heat at constant pressure (J kg−1 K−1)

d :

Bubble diameter (m)

g :

Acceleration of gravity

H fg :

Specific heat of vaporization (J kg−1)

I :

Electrical current (Ampere)

Ja :

Jacob number

k :

Thermal conductivity (W m−1 K−1)

N :

Nucleation (active site)

OD :

Outside diameter (rod heater) (m)

P :

Pressure (Pa)

Pr :

Prandtl number []

q :

Heat transfer (W)

Ra :

Roughness (m)

T :

Temperature (K)


Velocity (m s−1)

V :

Electrical voltage (V)


Heat transfer coefficient (W m−2 K−1)

δ :

See Eq. (11)


Surface tension (N m−1)


Density (kg m−3)






Forced convection



l :



Natural convection


Transient conduction


Transient conduction due to sliding bubbles






  1. Jacob M (1949) Heat transfer, vol 1. Wiley, New York

    Google Scholar 

  2. Rohsenow WM (1953) Heat transfer with evaporation. In: Proceedings of heat transfer—a symposium held at the University of Michigan during the summer of 1952, pp. 101–150

  3. Son G, Ramanujapu N, Dhir V (2002) Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling. J Heat Transf 124:51–62

    Article  Google Scholar 

  4. Wu J, Dhir VK, Qian J (2007) Numerical simulation of subcooled nucleate boiling by coupling level-set method with moving-mesh method. Numer Heat Transf Part B Fundam 51:535–563

    Article  Google Scholar 

  5. Bliss FE, Hsu S, Crawford M (1969) An investigation into the effects of various platings on the film coefficient during nucleate boiling from horizontal tubes. Int J Heat Mass Transf 12:1061–1072

    Article  Google Scholar 

  6. Duhar G, Colin C (2006) Dynamics of bubble growth and detachment in a viscous shear flow. Phys Fluids (1994-present) 18:077101

    Article  Google Scholar 

  7. Uzel S, Chappell MA, Payne SJ (2006) Modeling the cycles of growth and detachment of bubbles in carbonated beverages. J Phys Chem B 110:7579–7586

    Article  Google Scholar 

  8. Fritz W (1935) Berechnung des maximalvolume von dampfblasen. Phys Z 36:379–388

    Google Scholar 

  9. Zuber N (1959) Hydrodynamic aspects of boiling heat transfer (thesis) California Univ., Los Angeles; and Ramo-Wooldridge Corp., Los Angeles

  10. Cole R, Rohsenow W (1969) Correlation of bubble departure diameters for boiling of saturated liquids. Chem Eng Prog Symp Ser 65(92):211–213

    Google Scholar 

  11. Han CY, Griffith P (1965) The mechanism of heat transfer in nucleate pool boiling, Part I, Bubble initiation, growth and departure. Int J Heat Mass Transfer 8:887–904

    Article  MATH  Google Scholar 

  12. Staniszewski BE (1959) Nucleate boiling bubble growth and departure. Massachusetts Institute of Technology, Division of Industrial Cooperation, Cambridge

    Google Scholar 

  13. Cole R, Shulman H (1966) Bubble departure diameters at subatmospheric pressures. Chem Eng Prog Symp Ser 62:6–16

    Google Scholar 

  14. Van Stralen S, Zijl W (1978) Fundamental developments in bubble dynamics. In: Proceedings of the sixth international heat transfer conference, Toronto, pp. 429–450

  15. Cole R (1967) Bubble frequencies and departure volumes at subatmospheric pressures. AIChE J 13:779–783. doi:10.1002/aic.690130434

    Article  Google Scholar 

  16. Stephan K (1992) Saturated pool boiling and subcooled flow boiling of mixtures. Ph. D. thesis, University of Auckland, New Zealand

  17. Gorenflo D, Knabe V, Bieling V (1986) Bubble density on surfaces with nucleate boiling–its influence on heat transfer and burnout heat flux at elevated saturation pressures. In: Proceedings of the 8th international heat transfer conference, San Francisco, pp. 1995–2000

  18. Jensen MK, Memmel GJ (1986) Evaluation of bubble departure diameter correlations. In: Proceedings of the eighth international heat transfer conference, pp. 1907–1912

  19. Kutateladze S, Gogonin I (1979) Heat transfer in film condensation of slowly moving vapour. Int J Heat Mass Transf 22:1593–1599

    Article  Google Scholar 

  20. Lee HC, Oh BD, Bae SW, Kim MH (2003) Single bubble growth in saturated pool boiling on a constant wall temperature surface. Int J Multiph Flow 29:1857–1874. doi:10.1016/j.ijmultiphaseflow.2003.09.003

    Article  MATH  Google Scholar 

  21. Alavi Fazel SA, Shafaee SB (2010) Bubble dynamics for nucleate pool boiling of electrolyte solutions. J Heat Transf 132:081502. doi:10.1115/1.4001315

    Article  Google Scholar 

  22. Bankoff SG (1958) Entrapment of gas in the spreading of a liquid over a rough surface. AIChE J 4:24–26. doi:10.1002/aic.690040105

    Article  Google Scholar 

  23. Bankoff S (1957) Ebullition from solid surfaces in the absence of a pre-existing gaseous phase. Trans Am Soc, Mech Eng 79

    Google Scholar 

  24. Bier K, Gorenflo D, Salem M, Tanes Y (1978) Pool boiling heat transfer and size of active nucleation centers for horizontal plates with different surface roughness. In: Proceedings of the sixth international heat transfer conference, pp. 151–156

  25. McHale JP, Garimella SV (2010) Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. Int J Multiph Flow 36:249–260

    Article  Google Scholar 

  26. Jiang YY, Osada H, Inagaki M, Horinouchi N (2013) Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling. Int J Heat Mass Transf 56:640–652. doi:10.1016/j.ijheatmasstransfer.2012.09.006

    Article  Google Scholar 

  27. Hamzekhani S, Maniavi Falahieh M, Akbari A (2014) Bubble departure diameter in nucleate pool boiling at saturation: pure liquids and binary mixtures. Int J Refrig 46:50–58. doi:10.1016/j.ijrefrig.2014.07.003

    Article  Google Scholar 

  28. Zhang L, Li Z-D, Li K, Li H-X, Zhao J-F (2015) Influence of heater thermal capacity on bubble dynamics and heat transfer in nucleate pool boiling. Appl Therm Eng 88:118–126. doi:10.1016/j.applthermaleng.2014.11.080

    Article  Google Scholar 

  29. Chen X, Qiu H (2015) Bubble dynamics and heat transfer on a wettability patterned surface. Int J Heat Mass Transf 88:544–551. doi:10.1016/j.ijheatmasstransfer.2015.04.086

    Article  Google Scholar 

  30. Stephan K, Korner M (1969) Calculation of heat transfer of evaporating binary liquid mixtures. Chem Ing Tech 41:409

    Article  Google Scholar 

  31. Stephan K, Abdelsalam M (1980) Heat-transfer correlations for natural convection boiling. Int J Heat Mass Transf 23:73–87

    Article  Google Scholar 

  32. McNelly M (1953) A correlation of rates of heat transfer to nucleate boiling of liquids. J Imp Coll Chem Eng Soc 7:18–34

    Google Scholar 

  33. Gorenflo D, Kenning D (2010) H2 pool boiling. Springer, Berlin

    Google Scholar 

  34. Boyko L, Kruzhilin G (1967) Heat transfer and hydraulic resistance during condensation of steam in a horizontal tube and in a bundle of tubes. Int J Heat Mass Transf 10:361–373

    Article  Google Scholar 

  35. Mostinski I (1963) Application of the rule of corresponding states for calculation of heat transfer and critical heat flux. Teploenergetika 4:66

    Google Scholar 

  36. Rao GV, Balakrishnan A (2004) Heat transfer in nucleate pool boiling of multicomponent mixtures. Exp Therm Fluid Sci 29:87–103

    Article  Google Scholar 

  37. Bier K, Gorenflo D, Salem M, Tanes Y (1979) Effect of pressure and surface roughness on pool boiling of refrigerants. Int J Refrig 2:211–220

    Article  Google Scholar 

  38. Ribatski G, Jabardo JMS (2003) Experimental study of nucleate boiling of halocarbon refrigerants on cylindrical surfaces. Int J Heat Mass Transf 46:4439–4451

    Article  Google Scholar 

  39. Jabardo JMS, Ribatski G, Stelute E (2009) Roughness and surface material effects on nucleate boiling heat transfer from cylindrical surfaces to refrigerants R-134a and R-123. Exp Therm Fluid Sci 33:579–590

    Article  Google Scholar 

  40. Hosseini R, Gholaminejad A, Nabil M, Samadinia MH (2011) Concerning the effect of surface material on nucleate boiling heat transfer of R-113. In: ASME/JSME 2011 8th thermal engineering joint conference American Society of Mechanical Engineers, pp. T10238-T10238-10236

  41. Bejan A, Kraus AD (2003) Heat transfer handbook. Wiley, Hoboken

    Google Scholar 

  42. Tong LS, Tang YS (1997) Boiling heat transfer and two-phase flow. CRC Press, Boca Raton

    Google Scholar 

  43. Ruckenstein E (1964) A physical model for nucleate boiling heat transfer. Int J Heat Mass Transf 7:191–198. doi:10.1016/0017-9310(64)90083-3

    Article  Google Scholar 

  44. Kocamustafaogullari G (1983) Pressure dependence of bubble departure diameter for water. Int Commun Heat Mass Transf 10:501–509. doi:10.1016/0735-1933(83)90057-X

    Article  Google Scholar 

  45. Yang C, Wu Y, Yuan X, Ma C (2000) Study on bubble dynamics for pool nucleate boiling. Int J Heat Mass Transf 43:203–208. doi:10.1016/S0017-9310(99)00132-5

    Article  Google Scholar 

  46. Perry RH, Green DW, Maloney JO, Abbott MM, Ambler CM, Amero RC (1997) Perry’s chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Samaneh Bovard.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bovard, S., Asadinia, H., Hosseini, G. et al. Investigation and experimental analysis of the bubble departure diameter in pure liquids on horizontal cylindrical heater. Heat Mass Transfer 53, 1199–1210 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: