Skip to main content
Log in

A molecular dynamics study of phobic/philic nano-patterning on pool boiling heat transfer

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations were employed to investigate the pool boiling heat transfer of a liquid argon thin film on a flat, horizontal copper wall structured with vertical nanoscale pillars. The efficacy of phobic/philic nano-patterning for enhancing boiling heat transfer was scrutinized. Both nucleate and explosive boiling modes were considered. An error analysis demonstrated that the typical 2.5σ cutoff in MD simulations could under-predict heat flux by about 8.7 %, and 6σ cutoff was chosen here in order to maintain high accuracy. A new coordination number criterion was also introduced to better quantify evaporation characteristics. Results indicate that the argon-phobic/philic patterning tends to either have no effect, or decrease overall boiling heat flux, while the argon-philic nano-pillar/argon-philic wall shows the best heat transfer performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

e i :

Per-atom energy (eV)

E :

Potential energy (eV)

F i :

Force (eV/Å)

h fg :

Latent heat of vaporization (kJ/kg)

k b :

Boltzmann constant (eV/K)

m i :

Mass (g)

q :

Heat flux (W/m2)

q max :

Maximum attainable heat flux (W/m2)

r :

Interparticle distance (Å)

r c :

Cutoff distance (Å)

R :

Ideal gas constant (kJ/kg K)

S i :

Per-atom stress tensor (eV)

T :

Absolute temperature (K)

v i :

Velocity (Å/ps)

V i :

Volume (Å3)

x i :

Distance (Å)

ε:

Lennard-Jones potential well depth (eV)

η d :

Damping coefficient

ρ g :

Saturated vapor density (kg/m3)

σ:

Lennard-Jones characteristic length (Å)

References

  1. Wei J, Zhao J, Yuan M, Xue Y (2009) Boiling heat transfer enhancement by using micro-pin-finned surface for electronics cooling. Microgravity Sci Technol 21:S159–S173. doi:10.1007/s12217-009-9137-5

    Article  Google Scholar 

  2. Wen D, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7(2):141–150. doi:10.1016/j.partic.2009.01.007

    Article  Google Scholar 

  3. Madhour Y, Olivier J, Costa-Patry E, Paredes S, Michel B, Thome J (2011) Flow boiling of R134a in a multi-microchannel heat sink with hotspot heaters for energy-efficient microelectronic CPU cooling applications. IEEE Trans Componen Packag Manuf Technol 1(6):873–883. doi:10.1109/TCPMT.2011.2123895

    Article  Google Scholar 

  4. Herrault F, Hidalgo PA, Ji C-H, Glezer A, Allen MG (2012) Cooling performance of micromachined self-oscillating reed actuators in heat transfer channels with integrated diagnostics. In: Micro electro mechanical systems, IEEE 25th international conference on MEMS, pp 1217–1220. doi:10.1109/MEMSYS.2012.6170408

  5. Cosley MR, Fischer RL, Thiesen JH, Willen GS (2004) Patent US6679315 B2, Small Scale Chip Cooler Assembly

  6. Son G, Dhir VK, Ramanujapu N (1999) Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. J Heat Transf 121(3):623–631. doi:10.1115/1.2826025

    Article  Google Scholar 

  7. Kandlikar SG, Steinke ME (2002) Contact angles and interface behavior during rapid evaporation of liquid on a heated surface. Int J Heat Mass Transf 45(18):3771–3780. doi:10.1016/S0017-9310(02)00090-X

    Article  Google Scholar 

  8. Li C, Wang Z, Wang P-I, Peles Y, Koratkar N, Peterson GP (2008) Nanostructured copper interfaces for enhanced boiling. Small 4(8):1084–1088. doi:10.1002/smll.200700991

    Article  Google Scholar 

  9. Hendricks T, Krishnan S, Choi C, Chang C-H, Paul B (2010) Enhancement of pool boiling heat transfer using nanostructured surfaces on aluminum and copper. Int J Heat Mass Transf 53:3357–3365. doi:10.1016/j.ijheatmasstransfer.2010.02.025

    Article  Google Scholar 

  10. Lee CY, Bhuiya M, Kim KJ (2010) Pool boiling heat transfer with nano-porous surface. Int J Heat Mass Transf 53:4274–4279. doi:10.1016/j.ijheatmasstransfer.2010.05.054

    Article  Google Scholar 

  11. Cooke D, Kandlikar SG (2011) Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels. J Heat Transf 133(5):052902. doi:10.1115/1.4003046

    Article  Google Scholar 

  12. You SM, Kim JH, Kim KH (2003) Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 83:3374–3376. doi:10.1063/1.1619206

    Article  Google Scholar 

  13. Vemuri S, Kim KJ (2005) Pool boiling of saturated FC-72 on nano-porous surface. Int Commun Heat Mass Transfer 32:27–31. doi:10.1016/j.icheatmasstransfer.2004.03.020

    Article  Google Scholar 

  14. Betz AR, Xu J, Qiu H, Attinger D (2010) Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl Phys Lett 97:141909. doi:10.1063/1.3485057

    Article  Google Scholar 

  15. Zou Y, Cai J, Huai XL, Xin F, Guo Z (2014) Molecular dynamics simulation of heat conduction in Si nano-films induced by ultrafast laser heating. Thin Solid Films 558:455–461. doi:10.1016/j.tsf.2014.02.075

    Article  Google Scholar 

  16. Semironi DT, Azimian AR (2010) Molecular dynamics simulation of liquid–vapor phase equilibrium by using the modified Lennard-Jones potential function. Heat Mass Transf 46(3):287–294. doi:10.1007/s00231-009-0566-x

    Article  Google Scholar 

  17. Xu JL, Zhou ZQ (2004) Molecular dynamics simulation of liquid argon flow at platinum surfaces. Heat Mass Transf 40(11):859–869. doi:10.1007/s00231-003-0483-3

    Article  Google Scholar 

  18. Noorian H, Toghraie D, Azimian AR (2014) The effects of surface roughness geometry of flow undergoing Poiseuille flow by molecular dynamics simulation. Heat Mass Transf 50(1):95–104. doi:10.1007/s00231-013-1231-y

    Article  Google Scholar 

  19. Ji CY, Yan YY (2008) A molecular dynamics simulation of liquid-vapour-solid system near triple-phase contact line of flow boiling in a microchannel. Appl Therm Eng 28:195–202. doi:10.1016/j.applthermaleng.2007.03.029

    Article  Google Scholar 

  20. Shi B, Dhir VK (2009) Molecular dynamics simulation of the contact angle of liquids on solid surfaces. J Chem Phys 130:034705. doi:10.1063/1.3055600

    Article  Google Scholar 

  21. Hens A, Agarwal R, Biswas G (2014) Nanoscale study of boiling and evaporation in a liquid Ar film on a Pt heater using molecular dynamics simulation. Int J Heat Mass Transf 71:303–312. doi:10.1016/j.ijheatmasstransfer.2013.12.032

    Article  Google Scholar 

  22. Morshed AKMM, Paul TC, Khan JA (2011) Effect of nanostructures on evaporation and explosive boiling of thin liquid films: a molecular dynamics study. Appl Phys A 105:445–451. doi:10.1007/s00339-011-6577-8

    Article  Google Scholar 

  23. Seyf HR, Zhang Y (2013) Molecular dynamics simulation of normal and explosive boiling on nanostructured surface. J Heat Transf 135:121503. doi:10.1115/1.4024668

    Article  Google Scholar 

  24. Fu T, Mao Y, Tang Y, Zhang Y, Yuan W (2015) Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study. Heat Mass Transf 51:1–10. doi:10.1007/s00231-015-1668-2

    Article  Google Scholar 

  25. Maruyama S, Tatsuto K, Yamaguchi Y (1997) A molecular dynamics simulation of a bubble nucleation on solid surface. National Heat Transfer Symposium of Japan 34:1997

    Google Scholar 

  26. Mao Y, Zhang Y (2013) Molecular Simulation on Explosive Boiling of Water on a Hot Copper Plate. ASME 2013 heat transfer summer conference collocated with the ASME 2013 7th international conference on energy sustainability and the ASME 2013 11th international conference on fuel cell science, engineering and technology. American Society of Mechanical Engineers. doi:10.1115/HT2013-17001

  27. Sarkar S, Selvam RP (2007) Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. J Appl Phys 102:074302. doi:10.1063/1.2785009

    Article  Google Scholar 

  28. Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17:1302. doi:10.1103/PhysRevB.17.1302

    Article  Google Scholar 

  29. Dünweg B, Paul W (1991) Brownian dynamics simulations without Gaussian random numbers. Int J Modern Phys. C 2:817–827. doi:10.1142/S0129183191001037

    Article  Google Scholar 

  30. Plimpton, S. (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1-19. http://lammps.sandia.gov—Sandia National Laboratories, USA. doi:10.1006/jcph.1995.1039

  31. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38. doi:10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  32. Gilgen R, Kleinrahm R, Wagner W (1994) Measurement and correlation of the (pressure, density, temperature) relation of argon II. Saturated-liquid and saturated-vapour densities and vapour pressures along the entire coexistence curve. J Chem Thermodyn 26:399–413. doi:10.1006/jcht.1994.1049

    Article  Google Scholar 

  33. Maroo SC, Chung JN (2008) Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics. J Colloid Interface Sci 328:134–146. doi:10.1016/j.jcis.2008.09.018

    Article  Google Scholar 

  34. Jo H, Ahn HS, Kang SH, Kim MH (2011) A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Int J Heat Mass Transf 54:5643–5652. doi:10.1016/j.ijheatmasstransfer.2011.06.001

    Article  Google Scholar 

  35. Merabia S, Keblinski P, Joly L, Lewis LJ, Barrat J-L (2009) Critical heat flux around strongly heated nanoparticles. Phys Rev E 79:021404. doi:10.1103/PhysRevE.79.021404

    Article  Google Scholar 

  36. Gamble WR, Lienhard JH (1989) An upper bound for the critical boiling heat flux. J Heat Transf 111:815–818. doi:10.1115/1.3250759

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, R., Guo, Z. A molecular dynamics study of phobic/philic nano-patterning on pool boiling heat transfer. Heat Mass Transfer 53, 1061–1071 (2017). https://doi.org/10.1007/s00231-016-1878-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1878-2

Keywords

Navigation