Skip to main content
Log in

Closed form solution for a conductive–convective–radiative annular fin with multiple nonlinearities and its inverse analysis

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

An Erratum to this article was published on 07 September 2016

Abstract

The performance characteristics and temperature field of conducting–convecting–radiating annular fin are investigated. The nonlinear variation of thermal conductivity, power law dependency of heat transfer coefficient, linear variation of surface emissivity, and heat generation with the temperature are considered in the analysis. A semi-analytical approach, homotopy perturbation method is employed to solve the nonlinear differential equation of heat transfer. The analysis is presented in non-dimensional form, and the effect of various non-dimensional thermal parameters such as conduction–convection parameter, conduction–radiation parameter, linear and nonlinear variable thermal conductivity parameter, emissivity parameter, heat generation number and variable heat generation parameter are studied. For the correctness of the present analytical solution, the results are compared with the results available in the literature. In addition to forward problem, an inverse approach namely differential evolution method is employed for estimating the unknown thermal parameters for a given temperature field. The temperature fields are reconstructed using the inverse parameters and found to be in good agreement with the forward solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

r i , r o , t :

Inner radius, outer radius and thickness of the fin

h(T):

Coefficient of convective heat transfer

k(T):

Thermal conductivity

k o , h b , q o , ε s :

Parameters describing the coefficients of thermal conductivity, convective heat transfer, internal heat generation and surface emissivity at ambient temperature

κ, γ :

Parameters describing the linear and non-linear variation of thermal conductivity

λ, e :

Parameters describing the variation of surface emissivity and internal heat generation

β, β 1 :

Non-dimensional parameters describing the variation of linear and non-linear thermal conductivity parameter

n :

Exponent of variable convective heat transfer coefficient

N :

Non-dimensional thermo-geometric parameter, \(\left( {2hr_{i}^{2} /k_{o} t} \right)^{0.5}\)

M :

Non-dimensional conduction-radiation parameter, \((2r_{i}^{2} \sigma \varepsilon_{s} T_{b}^{3} /k_{o} t)\)

G :

Non-dimensional heat generation parameter, \(G = q_{o} r_{i}^{2} /k_{o} T_{b}\)

E G :

Non-dimensional parameter describing the variation of heat generation

T b :

Base temperature of fin

T a :

Ambient temperature

c 1, c 2, C 1, C 2 :

Constants of integration

\(\xi\) :

Dimensionless radius of fin, \(\xi = \, \left( {r - r_{i} } \right)/r_{i}\)

R :

Dimensionless outer radius ratio, R = r o /r i

θ :

Dimensionless temperature, θ = (T − T a)/(T b  − T a)

p :

Imbedding parameter

η :

Fin efficiency

Q f :

Actual heat transfer

Q max :

Maximum possible heat transfer

F(ξ):

Objective function

References

  1. Kraus AD, Aziz A, Welty JR (2002) Extended surface heat transfer. Wiley, New York

    Google Scholar 

  2. Sunden B, Heggs PJ (2000) Recent advances in analysis of heat transfer for fin type surfaces. WIT Press, Boston

    Google Scholar 

  3. Mokheimer EMA (2002) Performance of annular fins with different profiles subject to variable heat transfer coefficient. Int J Heat Mass Transf 45:3631–3642

    Article  MATH  Google Scholar 

  4. Zubair SM, Al-Garni AZ, Nizami JS (1996) The optimal dimensions of circular fins with variable profile and temperature dependent thermal conductivity. Int J Heat Mass Transf 39(16):3431–3439

    Article  Google Scholar 

  5. Yu LT, Chen CK (1999) Optimization of circular fins with variable thermal parameters. J Frankl Inst 336B:77–95

    Article  MATH  Google Scholar 

  6. Laor K, Kalman H (1996) Performance and optimum dimensions of different cooling fins with a temperature dependent heat transfer coefficient. Int J Heat Mass Transf 39(9):1993–2003

    Article  Google Scholar 

  7. Arslanturk C (2009) Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity. Heat Mass Transf 45:519–525

    Article  Google Scholar 

  8. Khan JM, Zubair SM (1999) The optimal dimensions of convective–radiating circular fins. Heat Mass Transf 35:469–478

    Article  Google Scholar 

  9. Chiu CH, Chen CK (2002) Application of the decomposition method to thermal stresses in isotropic circular fins with temperature dependent thermal conductivity. Acta Mech 157:147–158

    Article  MATH  Google Scholar 

  10. Malekzadeh P, Rahideh H, Karami G (2006) Optimization of convective–radiative fins by using differential quadrature element method. Energy Convers Manag 47:1505–1514

    Article  Google Scholar 

  11. Peng HS, Chen CL (2011) Hybrid differential transformation and finite difference method to annular fin with temperature-dependent thermal conductivity. Int J Heat Mass Transf 54:2427–2433

    Article  MATH  Google Scholar 

  12. Aksoy IG (2013) Thermal analysis of annular fins with temperature-dependent thermal properties. Appl Math Mech Engl Ed. 34(11):1349–1360

    Article  MathSciNet  Google Scholar 

  13. Aziz A, Bouaziz MN (2011) A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Convers Manag 52:2876–2882

    Article  Google Scholar 

  14. Georgiou E, Razelos P (1993) Performance analysis and optimization of convective annular fins with internal heat generation. Wfirme- und Stofffibertragung 28:275–284

    Article  Google Scholar 

  15. Hosseini K, Daneshian B, Amanifard N, Ansari R (2012) Homotopy analysis method for a fin with temperature dependent internal heat generation and thermal conductivity. Int J Nonlinear Sci 14(2):201–210

    MathSciNet  MATH  Google Scholar 

  16. Hatami M, Hasanpour A, Ganji DD (2013) Heat transfer study through porous fins (Si3N4 and Al) with temperature-dependent heat generation. Energy Convers Manag 74:9–16

    Article  Google Scholar 

  17. Torabi M, Zhang QB (2013) Analytical solution for evaluating the thermal performance and efficiency of convective–radiative straight fins with various profiles and considering all non-linearities. Energy Convers Manag 66:199–210

    Article  Google Scholar 

  18. Singh K, Das R Generalized inverse analysis for fins of different profiles with all temperature dependent parameters. Heat Mass Transf doi:10.1007/s00231-015-1676-2

  19. Sun Y, Ma J, Li B, Guo Z (2016) Predication of nonlinear heat transfer in a convective–radiative fin with temperature-dependent properties by the collocation spectral method. Numer Heat Transf Part B Fundam 69:68–83

    Article  Google Scholar 

  20. Das R (2011) A simplex search method for convective–conductive fin with variable conductivity. Int J Heat Mass Transf 54:5001–5009

    Article  MATH  Google Scholar 

  21. Mallick A, Das R (2014) Application of simplex search method for predicting unknown parameters in an annular fin subjected to thermal stresses. J Thermal Stresses 37:236–251

    Article  Google Scholar 

  22. He JH (1998) An approximate solution technique depending on an artificial parameter: a special example. Commun Nonlinear Sci Numer Simul 3(2):92–97

    Article  MathSciNet  MATH  Google Scholar 

  23. He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178(3–4):257–262

    Article  MathSciNet  MATH  Google Scholar 

  24. Storn R, Prince K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  25. Young T, Mohlenkamp M (2009) Introduction to numerical methods and matlab programming for engineers. Ohio University Department of Mathematics OH

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Mallick.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00231-016-1913-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R., Mallick, A. & Prasad, D.K. Closed form solution for a conductive–convective–radiative annular fin with multiple nonlinearities and its inverse analysis. Heat Mass Transfer 53, 1037–1049 (2017). https://doi.org/10.1007/s00231-016-1872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1872-8

Keywords

Navigation