Skip to main content
Log in

Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper presents the experimental heat transfer coefficient and pressure drop measured during R-134a saturated vapour condensation inside a small brazed compact plate fin heat exchanger with serrated fin surface. The effects of saturation temperature (pressure), refrigerant mass flux, refrigerant heat flux, effect of fin surface characteristics and fluid properties are investigated. The average condensation heat transfer coefficients and frictional pressure drops were determined experimentally for refrigerant R-134a at five different saturated temperatures (34, 38, 40, 42 and 44 °C). A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 22 kg/m2s. In the forced convection condensation region, the heat transfer coefficients show a three times increase and 1.5 times increase in frictional pressure drop for a doubling of the refrigerant mass flux. The heat transfer coefficients show weak sensitivity to saturation temperature (Pressure) and great sensitivity to refrigerant mass flux and fluid properties. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. Correlations are provided for the measured heat transfer coefficients and frictional pressure drops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A:

Heat transfer area (m2)

a:

Ratio of fin area to total area

Af :

Free flow area (m2)

CFD:

Computational fluid dynamics

Cp :

Specific heat capacity (J kg−1 K−1)

DM:

De-mineralized

Dh :

Hydraulic diameter (m)

FPI:

Fins per inch

f :

Fanning friction factor

G:

Mass flux (kg m−2 s−1)

g:

Acceleration due to gravity (m s−2)

H:

Specific Enthalpy (J kg−1)

h:

Heat transfer coefficient (W m−2 K−1),

Fin height (m)

hp:

Horse power

j :

Colburn factor

KE:

Kinetic energy (J)

l:

Serration length (m)

L:

Flow length (m)

m :

Mass flow rate (kg s−1)

Nu:

Nusselt number (hDh/k), dimensionless

P :

Pressure (Pa)

Pr:

Prandtl number (μCp k−1), dimensionless

Q :

Heat load (kW)

q :

Heat flux (kW m−2)

Re :

Reynolds number

s :

Fin spacing (m)

SCADA:

Supervisory controller and data acquisition system

T :

Temperature (°C)

t:

Fin thickness (m)

U:

Overall heat transfer coefficient (W m−2 K−1)

V:

Velocity (m s−1), volume (m3)

x:

Vapor quality of refrigerant

∆:

Difference

λ:

Thermal conductivity (W m−1 K−1)

µ:

Dynamic viscosity (Ns m−2)

υ:

Specific volume (m3 kg−1)

ρ :

Density (kg m−3)

η f :

Fin efficiency

η o :

Overall surface efficiency

a:

Momentum

ave:

Average

c:

Manifold and ports

eq:

Equivalent

f:

Fin, frictional

g:

Gravity

i:

Inlet

l, L :

Liquid

o:

Overall

p:

Plate

r:

Refrigerant

rsat:

Refrigerant saturation

t:

Total

w:

Water

References

  1. Shah RK, Kakac S, Bergles AE, Mayinger F (1980) Heat exchangers—thermal hydraulic fundamentals and design. Hemisphere Publishing Corp, Washington DC, pp 9–46

    Google Scholar 

  2. Yan Y-Y, Lio H-C, Lin T-F (1999) Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger. Int J Heat Mass Transf 42:993–1006

    Article  Google Scholar 

  3. Kang HJ, Lin CX, Ebadian MA (2000) Condensation of R134a flowing inside helicoidal pipe. Int J Heat Mass Transf 43:2553–2564

    Article  Google Scholar 

  4. Han JT, Lin CX, Ebadian MA (2005) Condensation heat transfer and pressure drop characteristics of R-134a in an annular helical pipe. Int Commun Heat Mass Transf 32:1307–1316

    Article  Google Scholar 

  5. Longo GA, Gasparella A, Sartori R (2004) Experimental heat transfer coefficients during refrigerant vaporisation and condensation inside herringbone-type plate heat exchangers with enhanced surfaces. Int J Heat Mass Transf 47:4125–4136

    Article  Google Scholar 

  6. Jokar A, Eckels SJ, Hosni MH, Gielda TP (2004) Condensation heat transfer and pressure drop of the brazed plate heat exchangers using R-134a. J Enhanc Heat Transf 11(2):161–182

    Article  Google Scholar 

  7. Wang LK, Sundén B, Yang QS (1999) Pressure drop analysis of steam condensation in a plate heat exchanger. Heat Transf Eng 20(1):71–77

    Article  Google Scholar 

  8. Longo GA, Gasparella A (2007) Refrigerant R134a vaporisation heat transfer and pressure drop inside a small brazed plate heat exchanger. Int J Refrig 30:821–830

    Article  MATH  Google Scholar 

  9. Longo GA (2008) Refrigerant R134a condensation heat transfer and pressure drop inside a small brazed plate heat exchanger. Int J Refrig 31:780–789

    Article  Google Scholar 

  10. Longo GA (2009) R410A condensation inside a commercial brazed plate heat exchanger. Exp Thermal Fluid Sci 33:284–291

    Article  Google Scholar 

  11. Longo GA (2010) Heat transfer and pressure drop during hydrocarbon refrigerant condensation inside a brazed plate heat exchanger. Int J Refrig 33:944–953

    Article  Google Scholar 

  12. Longo GA, Zilio C (2013) Condensation of the low GWP refrigerant HFC1234yf inside a brazed plate heat exchanger. Int J Refrig 36:612–621

    Article  Google Scholar 

  13. Jokar A, Hosni MH, Eckel SJ (2006) Dimensional analysis on the evaporation and condensation of refrigerant R-134a in minichannel plate heat exchangers. Appl Therm Eng 26:2287–2300

    Article  Google Scholar 

  14. Palm B (2007) Refrigeration systems with minimum charge of refrigerant. Appl Therm Eng 27:1693–1701

    Article  Google Scholar 

  15. Hesselgreaves JE (2001) Compact heat exchangers: selection, design and operation. Elsevier Science and Technology Books, Amsterdam

    Google Scholar 

  16. ALPEMA, The standards to the Brazed aluminium plate fin heat exchanger manufactures association (http://www.alpema.org/)

  17. ASHRAE Fundamental hand book (2001) Thermophysical properties of refrigerants

  18. Nusselt W (1916) Die oberflachenkondensation des wasserdampfes. Z.Ver. Dt Ing. 60:569–575

    Google Scholar 

  19. Kumar R, Varma HK, Agrawal KN, Mohanty B (2001) A comprehensive study of modified Wilson plot technique to determine the heat transfer coefficient during condensation of steam and R-134a over single horizontal plain and finned tubes. Heat Transfer Eng 22:3–12

    Google Scholar 

  20. Styrylska TB, Lechowska AA (2003) Unified Wilson plot method for determining heat transfer correlations for heat exchangers. Trans ASME 125:752

    Article  Google Scholar 

  21. Pallavi P, Ranganayakulu C (2011) Development of Heat transfer coefficient and friction factor correlations for offset fins using CFD. Int J Numer Methods Heat Fluid Flow 21(8):935–951

    Article  Google Scholar 

  22. Wieting AR (1975) Empirical correlations for heat transfer and flow friction characteristics of rectangular offset-fin plate-fin heat exchangers. J Heat Transf 97:488–490

    Article  Google Scholar 

  23. Manglik RM, Bergles AE (1995) Heat transfer and pressure drop correlations for the rectangular offset fin compact heat exchanger. J Exp Thermal Fluid Sci 10:171–180

    Article  Google Scholar 

  24. Joshi HM, Webb RL (1987) Heat transfer and friction in the offset strip-fin heat exchangers. Int J Heat Mass Transf 30:69–84

    Article  Google Scholar 

  25. Sen H, Herold KE (1995) Prandtl number effect on offset fin heat exchanger performance: predictive model for heat transfer and pressure drop. Int J Heat Mass Transf 38:1043–1051

    Article  MATH  Google Scholar 

  26. Sen H, Herold KE (1995) Prandtl number effect on offset fin heat exchanger performance: experimental results. Int J Heat Mass Transf 38:1053–1061

    Article  Google Scholar 

  27. Ranganayakulu C, Stephan K (2015) Boiling of R134a in a Compact Plate- Fin Heat Exchanger having Offset strip fins. ASME J Heat Transf No. HT-14-1235

  28. Ramana Murthy KV, Ranganayakulu C, Ashok Babu TP (2015) Development of heat transfer coefficient and friction factor correlations for serrated fins in water medium using CFD. J Phys Sci Appl 5(3):238–248

    Google Scholar 

  29. Collier JG (1982) Convective boiling and condensation, 2nd edn. McGraw Hill, New York

    Google Scholar 

  30. Shah RK, Focke WW (1988) Plate Heat Exchangers and their design theory, Heat transfer equipment design. Hemisphere, Washington, pp 227–254

    Google Scholar 

  31. Akers WW, Deans HA, Crosser, OK (1959) Condensing heat transfer within horizontal tubes. Chem Eng Prog Symp, pp 171–176

  32. Engineering Equation Solver (EES)., F-chart Software, Madison, WI 53744, USA

Download references

Acknowledgments

The Authors wish to acknowledge Aeronautical Development Agency for allowing publication of the paper. Authors appreciated for support of National Aerospace Laboratories for conducting experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Ramana Murthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramana Murthy, K.V., Ranganayakulu, C. & Ashok Babu, T.P. Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin. Heat Mass Transfer 53, 331–341 (2017). https://doi.org/10.1007/s00231-016-1827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1827-0

Keywords

Navigation