Advertisement

Heat and Mass Transfer

, Volume 52, Issue 12, pp 2769–2780 | Cite as

Boiling heat transfer enhancement of nanofluids on a smooth surface with agitation

  • Xin Kong
  • Baojin Qi
  • Jinjia WeiEmail author
  • Wei Li
  • Jie Ding
  • Yonghai Zhang
Original

Abstract

The pool boiling heat transfer performance on a smooth silicon chip surface with agitation was experimentally investigated in this study. The nanofluids (Ag/alcohol) of 0.02 % volume concentration and ethyl alcohol with purification over 99.9 % were the two contrast working fluids. For each group, subcoolings of 40, 50 and 60 K were conducted under atmospheric pressure. To enhance the heat transfer performance, an agitating device was fixed above the top of the chip. The experimental results indicated that nanofluids could enhance the heat transfer performance especially in the nucleate boiling region. The heat transfer coefficient was significantly increased with nanofluids, while the critical heat flux (CHF) was nearly not changed. In the agitation Reynolds number of 20,300, the heat transfer performance of nanofluids was significantly enhanced in the convection region, and the CHF was increased by more than 25 % for all groups. This boiling phenomenon was observed for both nanofluids and alcohol groups. Meanwhile, the boiling curves of different liquid subcoolings in the nucleate region were quite similar to each other under agitation.

Keywords

Heat Transfer Coefficient Critical Heat Flux Heat Transfer Performance Boiling Heat Transfer Chip Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

hv

Heat transfer coefficient, [W/(m2 K)]

N

Rotational speed (rad/s)

q

Heat flux (W/cm2)

qCHF

Critical heat flux (W/cm2)

Re

Reynolds number

Tb

Temperature of bulk liquid (K)

Tsat

Saturation temperature (K)

Tw

Wall temperature (K)

Greek symbols

\(\Delta T_{\text{sat}}\)

Wall superheat = T w − T sat (K)

\(\Delta T_{\text{sub}}\)

Liquid subcooling = T sat − T b (K)

μ

Viscosity coefficient (N s/m2)

ρ

Liquid density (kg/m3)

Subscripts

agi

Agitation

Notes

Acknowledgments

This work is supported by the project of National Natural Science Foundation of China (No. 51225601).

References

  1. 1.
    Das SK, Choi SU, Patel HE (2006) Heat transfer in nanofluids—a review. Heat Transf Eng 27(10):3–19CrossRefGoogle Scholar
  2. 2.
    Godson L, Raja B, Lal DM et al (2010) Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev 14(2):629–641CrossRefGoogle Scholar
  3. 3.
    Trisaksri V, Wongwises S (2009) Nucleate pool boiling heat transfer of TiO2–R141b nanofluids. Int J Heat Mass Transf 52(5):1582–1588CrossRefGoogle Scholar
  4. 4.
    Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and Applications of Non-Newtonian Flows, FED-vol.231/MD-vol. 66. ASME Internattional Mechanical Engineering, New York, pp 99–105Google Scholar
  5. 5.
    Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf 46(5):851–862. doi: 10.1016/S0017-9310(02)00348-4 CrossRefzbMATHGoogle Scholar
  6. 6.
    Bang IC, Heung Chang S (2005) Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf 48(12):2407–2419. doi: 10.1016/j.ijheatmasstransfer.2004.12.047 CrossRefGoogle Scholar
  7. 7.
    Park K-J, Jung D (2007) Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning. Energy Build 39(9):1061–1064. doi: 10.1016/j.enbuild.2006.12.001 CrossRefGoogle Scholar
  8. 8.
    Ahn HS, Kim JM, Kaviany M, Kim MH (2014) Pool boiling experiments in reduced graphene oxide colloids part II—Behavior after the CHF, and boiling hysteresis. Int J Heat Mass Transf 78:224–231. doi: 10.1016/j.ijheatmasstransfer.2014.06.055 CrossRefGoogle Scholar
  9. 9.
    Suriyawong A, Wongwises S (2010) Nucleate pool boiling heat transfer characteristics of TiO2–water nanofluids at very low concentrations. Exp Therm Fluid Sci 34(8):992–999. doi: 10.1016/j.expthermflusci.2010.03.002 CrossRefGoogle Scholar
  10. 10.
    Hegde RN, Rao SS, Reddy RP (2012) Experimental studies on CHF enhancement in pool boiling with CuO–water nanofluid. Heat Mass Transf 48(6):1031–1041CrossRefGoogle Scholar
  11. 11.
    Kim H, Kim J, Kim MH (2006) Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids. Int J Heat Mass Transf 49(25):5070–5074CrossRefGoogle Scholar
  12. 12.
    Kathiravan R, Kumar R, Gupta A, Chandra R (2010) Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater. Int J Heat Mass Transf 53(9):1673–1681CrossRefGoogle Scholar
  13. 13.
    Kwark SM, Kumar R, Moreno G, Yoo J, You SM (2010) Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transf 53(5):972–981CrossRefGoogle Scholar
  14. 14.
    Ahn HS, Kang SH, Jo H, Kim H, Kim MH (2011) Visualization study of the effects of nanoparticles surface deposition on convective flow boiling CHF from a short heated wall. Int J Multiph Flow 37(2):215–228. doi: 10.1016/j.ijmultiphaseflow.2010.09.005 CrossRefGoogle Scholar
  15. 15.
    Amiri A, Shanbedi M, Amiri H, Heris SZ, Kazi SN, Chew BT, Eshghi H (2014) Pool boiling heat transfer of CNT/water nanofluids. Appl Therm Eng 71(1):450–459CrossRefGoogle Scholar
  16. 16.
    Kshirsagar JM, Shrivastava R (2015) Review of the influence of nanoparticles on thermal conductivity, nucleate pool boiling and critical heat flux. Heat Mass Transf 51(3):381–398CrossRefGoogle Scholar
  17. 17.
    Niu G, Li J (2015) Comparative studies of pool boiling heat transfer with nano-fluids on porous surface. Heat Mass Transf 51(12):1769–1777CrossRefGoogle Scholar
  18. 18.
    Truong B, L-w Hu, Buongiorno J, McKrell T (2010) Modification of sandblasted plate heaters using nanofluids to enhance pool boiling critical heat flux. Int J Heat Mass Transf 53(1):85–94CrossRefGoogle Scholar
  19. 19.
    Zeinali Heris S (2011) Experimental investigation of pool boiling characteristics of low-concentrated CuO/ethylene glycol–water nanofluids. Int Commun Heat Mass Transfer 38(10):1470–1473CrossRefGoogle Scholar
  20. 20.
    Zhou DW (2004) Heat transfer enhancement of copper nanofluid with acoustic cavitation. Int J Heat Mass Transf 47(14–16):3109–3117. doi: 10.1016/j.ijheatmasstransfer.2004.02.018 CrossRefGoogle Scholar
  21. 21.
    Sheikhbahai M, Nasr Esfahany M, Etesami N (2012) Experimental investigation of pool boiling of Fe3O4/ethylene glycol–water nanofluid in electric field. Int J Therm Sci 62:149–153. doi: 10.1016/j.ijthermalsci.2011.10.004 CrossRefGoogle Scholar
  22. 22.
    Sesen M, Teksen Y, Sahin B, Sendur K, Pınar Menguc M, Kosar A (2013) Boiling heat transfer enhancement of magnetically actuated nanofluids. Appl Phys Lett 102(16):163107–163111CrossRefGoogle Scholar
  23. 23.
    White F (2015) Fluid mechanics. McGraw-Hill Higher Education, New YorkGoogle Scholar
  24. 24.
    Honda H, Takamastu H, Wei J (2002) Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness. J Heat Transf 124(2):383–390CrossRefGoogle Scholar
  25. 25.
    Naphon P, Thongjing C (2014) Pool boiling heat transfer characteristics of refrigerant-nanoparticle mixtures. Int Commun Heat Mass Transfer 52:84–89CrossRefGoogle Scholar
  26. 26.
    Wei JJ (2002) Experimental study on enhanced boiling heat transfer from silicon chip with micro-pin-fins and submicro-scale roughness. Kyushu University, FukuokaGoogle Scholar
  27. 27.
    O’Connor JP, You SM, Chang JY (1996) Gas-saturated pool boiling heat transfer from smooth and microporous surfaces in FC-72. J Heat Transf 118(3):662–667CrossRefGoogle Scholar
  28. 28.
    Pramuk FS, Westeater JW (1956) Effect of agitation on the critical temperature difference for boiling liauid. Chem Eng Prog 52(18):79–83Google Scholar
  29. 29.
    Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31(6):593–599CrossRefGoogle Scholar
  30. 30.
    Wang X-Q, Mujumdar AS (2008) A review on nanofluids-part II: experiments and applications. Braz J Chem Eng 25(4):631–648CrossRefGoogle Scholar
  31. 31.
    Lee J, Mudawar I (2007) Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. Int J Heat Mass Transf 50(3–4):452–463. doi: 10.1016/j.ijheatmasstransfer.2006.08.001 CrossRefGoogle Scholar
  32. 32.
    Eastman J, Choi S, Li S, Yu W, Thompson L (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720CrossRefGoogle Scholar
  33. 33.
    Ahn HS, Kang SH, Kim MH (2012) Visualized effect of alumina nanoparticles surface deposition on water flow boiling heat transfer. Exp Therm Fluid Sci 37:154–163. doi: 10.1016/j.expthermflusci.2011.10.017 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xin Kong
    • 1
  • Baojin Qi
    • 1
  • Jinjia Wei
    • 1
    Email author
  • Wei Li
    • 2
  • Jie Ding
    • 1
  • Yonghai Zhang
    • 1
  1. 1.State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Institute of Thermal Science and Power SystemsZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations