Skip to main content

Advertisement

Log in

Assessment of zero-equation SGS models for simulating indoor environment

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The understanding of air-flow in enclosed spaces plays a key role to designing ventilation systems and indoor environment. The computational fluid dynamics aspects dictate that the large eddy simulation (LES) offers a subtle means to analyze complex flows with recirculation and streamline curvature effects, providing more robust and accurate details than those of Reynolds-averaged Navier–Stokes simulations. This work assesses the performance of two zero-equation sub-grid scale models: the Rahman–Agarwal–Siikonen–Taghinia (RAST) model with a single grid-filter and the dynamic Smagorinsky model with grid-filter and test-filter scales. This in turn allows a cross-comparison of the effect of two different LES methods in simulating indoor air-flows with forced and mixed (natural + forced) convection. A better performance against experiments is indicated with the RAST model in wall-bounded non-equilibrium indoor air-flows; this is due to its sensitivity toward both the shear and vorticity parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(C_\mu\) :

Eddy-viscosity coefficient

\(\bar{C}_s\) :

Smagorinsky coefficient

G :

Filter function

g :

Gravitational acceleration

k :

Total turbulent kinetic energy

\(L_{ij}\) :

Leonard stress

Pr :

Molecular Prandtl number

\(Pr_{sgs}\) :

Sub-grid scale Prandtl number

Re :

Reynolds number

\(\bar{S}_{ij}\) :

Resolved strain-rate tensor

T :

Temperature

\(\bar{u}_i\) :

Grid-filter velocities

\(\tilde{\bar{u}}_i\) :

Test-filter velocities

\(\bar{u}_\tau\) :

Friction velocity

\(\overline{W}_{ij}\) :

Resolved vorticity tensor

\(y^+\) :

Dimensionless wall distance \((\bar{u}_\tau y/\nu )\)

\(\beta\) :

Thermal expansion coefficient

\(\delta _{i,j}\) :

Kronecker’s delta

\(\varDelta t\) :

Time step

\(\bar{\varDelta }\) :

Grid-filter width

\(\tilde{\varDelta }\) :

Test-filter width

\(\nu ,\nu _T\) :

Laminar and turbulent viscosities

\(\bar{\theta }_i\) :

Grid-filter temperature

\(\tilde{\bar{\theta }}_i\) :

Test-filter temperature

\(\rho\) :

Density

\(\tau _{i,j}\) :

Sub-grid scale stress tensor

CFD:

Computational fluid dynamics

DSM:

Dynamic Smagorinsky model

LES:

Large eddy simulation

RANS:

Reynolds averaged Navier–Stokes

RAST:

Rahman–Agarwal–Siikonen–Taghinia

SGS:

Sub-grid scale

ij :

Variable numbers

in :

Inlet condition

out :

Outlet condition

References

  1. Chen Q (1995) Comparison of different \(k\)-\(\epsilon\) models for indoor air flow computations. Numer Heat Transf Part B 28:353–369

    Article  Google Scholar 

  2. Chen Q (1996) Prediction of room air motion by Reynolds-stress model. Build Environ 31(3):233–244

    Article  Google Scholar 

  3. Chen Q (1997) Computational fluid dynamics for HVAC: successes and failures. ASHRAE Trans 103(Part 1):178–187

    Google Scholar 

  4. Luo S, Roux B (2004) Modeling of the HESCO nozzle diffuser used in IEA annex 20 experimental test room. Build Environ 39:367–384

    Article  Google Scholar 

  5. Stamou A, Katsiris I (2006) Verification of a CFD model for indoor airflow and heat transfer. Build Environ 41:1171–1181

    Article  Google Scholar 

  6. Zhai Z, Zhang Z, Zhang W, Chen Q (2007) Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD. Part 1: summary of prevalent turbulence models. HVAC&R Res 13(6):871–886

  7. Zhang Z, Zhang W, Zhai JZ, Chen Q (2007) Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD. Part 2: comparison with experimental data from literature. HVAC&R Res 13(6):871–886

    Article  Google Scholar 

  8. Cao GY, Ruponen M, Paavilainen R, Kurnitski J (2011) Modeling and simulation of the near-wall velocity of a turbulent ceiling attached plane jet after its impingement with the corner. Build Environ 46:489–500

    Article  Google Scholar 

  9. Smagorinsky J (1963) General circulation experiments with the primitive equations, I. The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  10. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765

    Article  MATH  Google Scholar 

  11. Olsson M, Fuchs L (1996) Large eddy simulation of proxi- mal region of a spatially developing circular jet. Phys Fluids 8:2125–2137

    Article  Google Scholar 

  12. Ghosal S, Lund T, Moin P, Akselvoll K (1995) A dynamic localization model for large-eddy simulation of turbulent flows. J Fluid Mech 286:229–255

    Article  MathSciNet  MATH  Google Scholar 

  13. Meneveau C, Lund T, Cabot WH (1996) A Lagrangian dynamic sub-grid scale model of turbulence. J Fluid Mech 319:315–353

    Article  MATH  Google Scholar 

  14. Taghinia J, Rahman MM, Siikonen T, Agarwal RK (2014) A sub-grid scale model with non-traditional eddy-viscosity coefficient. In: 7th AIAA theoretical fluid mechanics conference. doi:10.2514/6.2014-3212

  15. Rahman MM, Siikonen T (2006) An explicit algebraic Reynolds stress model in turbulence. Int J Numer Methods Fluids 52:1135–1157

    Article  MathSciNet  MATH  Google Scholar 

  16. Rahman MM, Siikonen T (2005) An eddy viscosity model with near-wall modifications. Int J Numer Methods Fluids 49:975–997

    Article  MathSciNet  MATH  Google Scholar 

  17. Nicoud F, Ducros F (1999) Subgrid-scale stress modeling based on the square of the velocity gradient tensor. Flow Turbul Combust 62:183–200

    Article  MATH  Google Scholar 

  18. Vreman AW (2004) An eddy-viscosity subgrid-scale model for turbulent shear flow: algebric theory and applications. Phys Fluids 16:3670–3681

    Article  MATH  Google Scholar 

  19. Moin P, Kim J (1982) Numerical investigation of turbulent channel flow. J Fluid Mech 118:341–377

    Article  MATH  Google Scholar 

  20. Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure model. Phys Fluids 4(3):633–635

    Article  MathSciNet  Google Scholar 

  21. Rahman MM, Miettien A, Siikonen T (1996) Modified SIMPLE formulation on a collocated grid with an assessment of the simplified QUICK scheme. Numer Heat Transf Part B 30:291–314

    Article  Google Scholar 

  22. Rahman MM, Siikonen T, Miettien A (1997) A pressure-correction method for solving fluid flow problems on a collocated grid. Numer Heat Transf Part B 32:63–84

    Article  Google Scholar 

  23. Majander P (2000) Developments in large eddy simulation. Report 128, Aalto University. ISBN 951-22-4861-1

  24. Davidson L (2001) Hybrid LES-RANS: a combination of a one-equation SGS model and a \(k\)-\(\omega\) model for predicting recirculating flows. In: ECCOMAS CFD conference, Swansen, UK

  25. Krajnovic K, Davidson L (2006) A mixed one-equation subgrid model for large-eddy simulation. Int J Heat Fluid Flow 27:402–415

    Article  Google Scholar 

  26. Nielsen PV, Restivo A, Whitelaw JH (1978) The velocity characteristics of ventilated room. ASME J Fluids Eng 100:291–298

    Article  Google Scholar 

  27. Blay D, Mergui S, Niculae C (1992) Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet. In: Chen TS, Chu TY (eds) Fundamentals of mixed convection, HTD, vol 213. ASME, New York, pp 65–72

  28. Taghinia J, Rahman MM, Siikonen T (2014) Numerical investigation of twin-jet impingement with hybrid-type turbulence modeling. Appl Therm Eng 73(1):648–657

    Article  Google Scholar 

  29. Chen HJ, Moshfegh B, Cehlin M (2012) Numerical investigation of the flow behavior of an isothermal impinging jet in a room. Build Environ 49:154–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Taghinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghinia, J., Rahman, M.M. & Tse, T.K. Assessment of zero-equation SGS models for simulating indoor environment. Heat Mass Transfer 52, 2781–2794 (2016). https://doi.org/10.1007/s00231-016-1776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1776-7

Keywords

Navigation