Advertisement

Heat and Mass Transfer

, Volume 52, Issue 12, pp 2781–2794 | Cite as

Assessment of zero-equation SGS models for simulating indoor environment

  • Javad TaghiniaEmail author
  • Md Mizanur Rahman
  • Tim K.T. Tse
Original

Abstract

The understanding of air-flow in enclosed spaces plays a key role to designing ventilation systems and indoor environment. The computational fluid dynamics aspects dictate that the large eddy simulation (LES) offers a subtle means to analyze complex flows with recirculation and streamline curvature effects, providing more robust and accurate details than those of Reynolds-averaged Navier–Stokes simulations. This work assesses the performance of two zero-equation sub-grid scale models: the Rahman–Agarwal–Siikonen–Taghinia (RAST) model with a single grid-filter and the dynamic Smagorinsky model with grid-filter and test-filter scales. This in turn allows a cross-comparison of the effect of two different LES methods in simulating indoor air-flows with forced and mixed (natural + forced) convection. A better performance against experiments is indicated with the RAST model in wall-bounded non-equilibrium indoor air-flows; this is due to its sensitivity toward both the shear and vorticity parameters.

Keywords

Large Eddy Simulation Mixed Convection Smagorinsky Model Dynamic Smagorinsky Model Kolmogorov Time Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

\(C_\mu\)

Eddy-viscosity coefficient

\(\bar{C}_s\)

Smagorinsky coefficient

G

Filter function

g

Gravitational acceleration

k

Total turbulent kinetic energy

\(L_{ij}\)

Leonard stress

Pr

Molecular Prandtl number

\(Pr_{sgs}\)

Sub-grid scale Prandtl number

Re

Reynolds number

\(\bar{S}_{ij}\)

Resolved strain-rate tensor

T

Temperature

\(\bar{u}_i\)

Grid-filter velocities

\(\tilde{\bar{u}}_i\)

Test-filter velocities

\(\bar{u}_\tau\)

Friction velocity

\(\overline{W}_{ij}\)

Resolved vorticity tensor

\(y^+\)

Dimensionless wall distance \((\bar{u}_\tau y/\nu )\)

\(\beta\)

Thermal expansion coefficient

\(\delta _{i,j}\)

Kronecker’s delta

\(\varDelta t\)

Time step

\(\bar{\varDelta }\)

Grid-filter width

\(\tilde{\varDelta }\)

Test-filter width

\(\nu ,\nu _T\)

Laminar and turbulent viscosities

\(\bar{\theta }_i\)

Grid-filter temperature

\(\tilde{\bar{\theta }}_i\)

Test-filter temperature

\(\rho\)

Density

\(\tau _{i,j}\)

Sub-grid scale stress tensor

Abbreviations

CFD

Computational fluid dynamics

DSM

Dynamic Smagorinsky model

LES

Large eddy simulation

RANS

Reynolds averaged Navier–Stokes

RAST

Rahman–Agarwal–Siikonen–Taghinia

SGS

Sub-grid scale

Subscript

ij

Variable numbers

in

Inlet condition

out

Outlet condition

References

  1. 1.
    Chen Q (1995) Comparison of different \(k\)-\(\epsilon\) models for indoor air flow computations. Numer Heat Transf Part B 28:353–369CrossRefGoogle Scholar
  2. 2.
    Chen Q (1996) Prediction of room air motion by Reynolds-stress model. Build Environ 31(3):233–244CrossRefGoogle Scholar
  3. 3.
    Chen Q (1997) Computational fluid dynamics for HVAC: successes and failures. ASHRAE Trans 103(Part 1):178–187Google Scholar
  4. 4.
    Luo S, Roux B (2004) Modeling of the HESCO nozzle diffuser used in IEA annex 20 experimental test room. Build Environ 39:367–384CrossRefGoogle Scholar
  5. 5.
    Stamou A, Katsiris I (2006) Verification of a CFD model for indoor airflow and heat transfer. Build Environ 41:1171–1181CrossRefGoogle Scholar
  6. 6.
    Zhai Z, Zhang Z, Zhang W, Chen Q (2007) Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD. Part 1: summary of prevalent turbulence models. HVAC&R Res 13(6):871–886Google Scholar
  7. 7.
    Zhang Z, Zhang W, Zhai JZ, Chen Q (2007) Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD. Part 2: comparison with experimental data from literature. HVAC&R Res 13(6):871–886CrossRefGoogle Scholar
  8. 8.
    Cao GY, Ruponen M, Paavilainen R, Kurnitski J (2011) Modeling and simulation of the near-wall velocity of a turbulent ceiling attached plane jet after its impingement with the corner. Build Environ 46:489–500CrossRefGoogle Scholar
  9. 9.
    Smagorinsky J (1963) General circulation experiments with the primitive equations, I. The basic experiment. Mon Weather Rev 91:99–164CrossRefGoogle Scholar
  10. 10.
    Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765CrossRefzbMATHGoogle Scholar
  11. 11.
    Olsson M, Fuchs L (1996) Large eddy simulation of proxi- mal region of a spatially developing circular jet. Phys Fluids 8:2125–2137CrossRefGoogle Scholar
  12. 12.
    Ghosal S, Lund T, Moin P, Akselvoll K (1995) A dynamic localization model for large-eddy simulation of turbulent flows. J Fluid Mech 286:229–255MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Meneveau C, Lund T, Cabot WH (1996) A Lagrangian dynamic sub-grid scale model of turbulence. J Fluid Mech 319:315–353CrossRefzbMATHGoogle Scholar
  14. 14.
    Taghinia J, Rahman MM, Siikonen T, Agarwal RK (2014) A sub-grid scale model with non-traditional eddy-viscosity coefficient. In: 7th AIAA theoretical fluid mechanics conference. doi: 10.2514/6.2014-3212
  15. 15.
    Rahman MM, Siikonen T (2006) An explicit algebraic Reynolds stress model in turbulence. Int J Numer Methods Fluids 52:1135–1157MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rahman MM, Siikonen T (2005) An eddy viscosity model with near-wall modifications. Int J Numer Methods Fluids 49:975–997MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nicoud F, Ducros F (1999) Subgrid-scale stress modeling based on the square of the velocity gradient tensor. Flow Turbul Combust 62:183–200CrossRefzbMATHGoogle Scholar
  18. 18.
    Vreman AW (2004) An eddy-viscosity subgrid-scale model for turbulent shear flow: algebric theory and applications. Phys Fluids 16:3670–3681CrossRefzbMATHGoogle Scholar
  19. 19.
    Moin P, Kim J (1982) Numerical investigation of turbulent channel flow. J Fluid Mech 118:341–377CrossRefzbMATHGoogle Scholar
  20. 20.
    Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure model. Phys Fluids 4(3):633–635MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rahman MM, Miettien A, Siikonen T (1996) Modified SIMPLE formulation on a collocated grid with an assessment of the simplified QUICK scheme. Numer Heat Transf Part B 30:291–314CrossRefGoogle Scholar
  22. 22.
    Rahman MM, Siikonen T, Miettien A (1997) A pressure-correction method for solving fluid flow problems on a collocated grid. Numer Heat Transf Part B 32:63–84CrossRefGoogle Scholar
  23. 23.
    Majander P (2000) Developments in large eddy simulation. Report 128, Aalto University. ISBN 951-22-4861-1Google Scholar
  24. 24.
    Davidson L (2001) Hybrid LES-RANS: a combination of a one-equation SGS model and a \(k\)-\(\omega\) model for predicting recirculating flows. In: ECCOMAS CFD conference, Swansen, UKGoogle Scholar
  25. 25.
    Krajnovic K, Davidson L (2006) A mixed one-equation subgrid model for large-eddy simulation. Int J Heat Fluid Flow 27:402–415CrossRefGoogle Scholar
  26. 26.
    Nielsen PV, Restivo A, Whitelaw JH (1978) The velocity characteristics of ventilated room. ASME J Fluids Eng 100:291–298CrossRefGoogle Scholar
  27. 27.
    Blay D, Mergui S, Niculae C (1992) Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet. In: Chen TS, Chu TY (eds) Fundamentals of mixed convection, HTD, vol 213. ASME, New York, pp 65–72Google Scholar
  28. 28.
    Taghinia J, Rahman MM, Siikonen T (2014) Numerical investigation of twin-jet impingement with hybrid-type turbulence modeling. Appl Therm Eng 73(1):648–657CrossRefGoogle Scholar
  29. 29.
    Chen HJ, Moshfegh B, Cehlin M (2012) Numerical investigation of the flow behavior of an isothermal impinging jet in a room. Build Environ 49:154–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Javad Taghinia
    • 1
    • 2
    Email author
  • Md Mizanur Rahman
    • 1
  • Tim K.T. Tse
    • 2
  1. 1.Department of Mechanical EngineeringAalto UniversityEspooFinland
  2. 2.Department of Civil and Environmental EngineeringHong Kong University of Science and TechnologyHong Kong SARChina

Personalised recommendations