Heat and Mass Transfer

, Volume 52, Issue 12, pp 2621–2634 | Cite as

A new optimization approach for shell and tube heat exchangers by using electromagnetism-like algorithm (EM)

  • Azher M. AbedEmail author
  • Issa Ahmed Abed
  • Hasan Sh. Majdi
  • Ali Najah Al-Shamani
  • K. Sopian


This study proposes a new procedure for optimal design of shell and tube heat exchangers. The electromagnetism-like algorithm is applied to save on heat exchanger capital cost and designing a compact, high performance heat exchanger with effective use of the allowable pressure drop (cost of the pump). An optimization algorithm is then utilized to determine the optimal values of both geometric design parameters and maximum allowable pressure drop by pursuing the minimization of a total cost function. A computer code is developed for the optimal shell and tube heat exchangers. Different test cases are solved to demonstrate the effectiveness and ability of the proposed algorithm. Results are also compared with those obtained by other approaches available in the literature. The comparisons indicate that a proposed design procedure can be successfully applied in the optimal design of shell and tube heat exchangers. In particular, in the examined cases a reduction of total costs up to 30, 29, and 56.15 % compared with the original design and up to 18, 5.5 and 7.4 % compared with other approaches for case study 1, 2 and 3 respectively, are observed. In this work, economic optimization resulting from the proposed design procedure are relevant especially when the size/volume is critical for high performance and compact unit, moderate volume and cost are needed.


Particle Swarm Optimization Heat Transfer Coefficient Heat Exchanger Heat Transfer Area Shell Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols


Numerical constant


Numerical constant


Numerical constant


Cross section area normal to flow direction (m2)


Heat transfer surface area (m2)


Baffles spacing (m)


Clearance (m)


Specific heat (kJ/kg K)


Capital investment (€)


Energy cost (€/kW h)


Annual operating cost (€/year)


Total discounted operating cost (€)


Total annual cost (€)


Tube diameter (m)


Equivalent diameter (m)


Shell diameter (m)


Friction factor


Correction factor


Heat transfer coefficient (W/m2 K)


Annual operating time (h/year)


Annual discount rate (%)


Thermal conductivity (W/m K)


Numerical constant


Tube length (m)


Mass flow rate (kg/s)


Number of tubes passages


Numerical constant


Equipment life (year)


Number of tubes


Pumping power (W)


Numerical constant


Prandtl number


Tube pitch (m)


Pitch ratio, PR = 1.25 do (m)


Heat duty (W)


Reynolds number


Fouling resistance (m2 K/W)


Temperature (K)


Overall heat transfer coefficient (W/m2 K)


Fluid velocity (m/s)

Greek symbols

\(\Delta P\)

Pressure drop (Pa)

\(\Delta T_{LM}\)

Logarithmic mean temperature difference (°C)


Numerical constant


Dynamic viscosity (pa s)


Kinematic viscosity (m


Density (kg/m3)


Overall pumping efficiency









Belonging to shell


Belonging to tube


Tube wall


Logarithmic mean


  1. 1.
    Muralikrishna K, Shenoy U (2000) Heat exchanger design targets for minimum area and cost. Chem Eng Res Des 78:161–167CrossRefGoogle Scholar
  2. 2.
    Wu S-Y, Yuan X-F, Li Y-R, Xiao L (2007) Exergy transfer effectiveness on heat exchanger for finite pressure drop. Energy 32:2110–2120CrossRefGoogle Scholar
  3. 3.
    Gupta A, Das SK (2007) Second law analysis of crossflow heat exchanger in the presence of axial dispersion in one fluid. Energy 32:664–672CrossRefGoogle Scholar
  4. 4.
    San J-Y (2010) Second-law performance of heat exchangers for waste heat recovery. Energy 35:1936–1945CrossRefGoogle Scholar
  5. 5.
    Eryener D (2006) Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers. Energy Convers Manag 47:1478–1489CrossRefGoogle Scholar
  6. 6.
    Tsatsaronis G (1993) Thermoeconomic analysis and optimization of energy systems. Prog Energy Combust Sci 19:227–257. doi: 10.1016/0360-1285(93)90016-8 CrossRefGoogle Scholar
  7. 7.
    Caputo AC, Pelagagge PM, Salini P (2008) Heat exchanger design based on economic optimisation. Appl Therm Eng 28:1151–1159. doi: 10.1016/j.applthermaleng.2007.08.010 CrossRefGoogle Scholar
  8. 8.
    Ponce-Ortega JM, Serna-González M, Jiménez-Gutiérrez A (2009) Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Appl Therm Eng 29:203–209. doi: 10.1016/j.applthermaleng.2007.06.040 CrossRefGoogle Scholar
  9. 9.
    Patel V, Rao R (2010) Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique. Appl Therm Eng 30:1417–1425CrossRefGoogle Scholar
  10. 10.
    Şencan Şahin A, Kılıç B, Kılıç U (2011) Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm. Energy Convers Manag 52:3356–3362CrossRefGoogle Scholar
  11. 11.
    Hadidi A, Nazari A (2013) Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. Appl Therm Eng 51:1263–1272. doi: 10.1016/j.applthermaleng.2012.12.002 CrossRefGoogle Scholar
  12. 12.
    Hadidi A (2015) A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm. Appl Energy 150:196–210. doi: 10.1016/j.apenergy.2015.04.024 CrossRefGoogle Scholar
  13. 13.
    Selbaş R, Kızılkan Ö, Reppich M (2006) A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chem Eng Process 45:268–275. doi: 10.1016/j.cep.2005.07.004 CrossRefGoogle Scholar
  14. 14.
    Hadidi A, Hadidi M, Nazari A (2013) A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view. Energy Convers Manag 67:66–74. doi: 10.1016/j.enconman.2012.11.017 CrossRefGoogle Scholar
  15. 15.
    Saffar-Avval M, Damangir E (1995) A general correlation for determining optimum baffle spacing for all types of shell and tube exchangers. Int J Heat Mass Transf 38:2501–2506CrossRefGoogle Scholar
  16. 16.
    Ozkol I, Komurgoz G (2005) Determination of the optimum geometry of the heat exchanger body via a genetic algorithm. Numer Heat Transf Part A Appl 48:283–296. doi: 10.1080/10407780590948891 CrossRefGoogle Scholar
  17. 17.
    Valdevit L, Pantano A, Stone H, Evans A (2006) Optimal active cooling performance of metallic sandwich panels with prismatic cores. Int J Heat Mass Transf 49:3819–3830CrossRefzbMATHGoogle Scholar
  18. 18.
    Allen B, Gosselin L (2008) Optimal geometry and flow arrangement for minimizing the cost of shell-and-tube condensers. Int J Energy Res 32:958–969CrossRefGoogle Scholar
  19. 19.
    Sun S, Lu Y, Yan C (1993) Optimizationin calculation of shell-and-tube heat exchanger. Int Commun Heat Mass Transfer 20:675–685CrossRefGoogle Scholar
  20. 20.
    Azad AV, Amidpour M (2011) Economic optimization of shell and tube heat exchanger based on constructal theory. Energy 36:1087–1096CrossRefGoogle Scholar
  21. 21.
    Sharma S, Rangaiah G, Cheah K (2012) Multi-objective optimization using MS Excel with an application to design of a falling-film evaporator system. Food Bioprod Process 90:123–134CrossRefGoogle Scholar
  22. 22.
    Caputo AC, Pelagagge PM, Salini P (2015) Heat exchanger optimized design compared with installed industrial solutions. Appl Therm Eng 87:371–380. doi: 10.1016/j.applthermaleng.2015.05.010 CrossRefGoogle Scholar
  23. 23.
    Hultmann Ayala HV, Keller P, Morais MdF, Mariani VC, Coelho LdS, Rao RV (2016) Design of heat exchangers using a novel multiobjective free search differential evolution paradigm. Appl Therm Eng 94:170–177. doi: 10.1016/j.applthermaleng.2015.10.066 CrossRefGoogle Scholar
  24. 24.
    Birbil Şİ, Fang S-C (2003) An electromagnetism-like mechanism for global optimization. J Global Optim 25:263–282MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Birbil Şİ, Fang S-C, Sheu R-L (2004) On the convergence of a population-based global optimization algorithm. J Global Optim 30:301–318MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tsou C-S, Kao C-H (2006) An electromagnetism-like meta-heuristic for multi-objective optimization. In: IEEE Congress on Evolutionary Computation, 2006 CEC, pp 1172–1178Google Scholar
  27. 27.
    Jolai F, Tavakkoli-Moghaddam R, Golmohammadi A, Javadi B (2012) An electromagnetism-like algorithm for cell formation and layout problem. Expert Syst Appl 39:2172–2182CrossRefGoogle Scholar
  28. 28.
    Abed IA, Koh SP, Sahari KSM, Tiong SK, Yap DF (2012) Comparison between genetic algorithm and electromagnetism-like algorithm for solving inverse kinematics. World Appl Sci J 20:946–954Google Scholar
  29. 29.
    Yurtkuran A, Emel E (2010) A new hybrid electromagnetism-like algorithm for capacitated vehicle routing problems. Expert Syst Appl 37:3427–3433CrossRefGoogle Scholar
  30. 30.
    Golmohammadi A, Ghodsi R (2009) Applying an integer Electromagnetism-like algorithm to solve the cellular manufacturing scheduling problem with an integrated approach. In: International Conference on IEEE Computers & Industrial Engineering, 2009 CIE, pp 34–39Google Scholar
  31. 31.
    Liu C, Sun X (2010) Electromagnetism-like mechanism particle swarm optimization and application in thermal process model identification. In: 2010 Chinese IEEE on Control and Decision Conference (CCDC), pp 2966–2970Google Scholar
  32. 32.
    Guan X, Dai X, Qiu B, Li J (2012) A revised electromagnetism-like mechanism for layout design of reconfigurable manufacturing system. Comput Ind Eng 63:98–108CrossRefGoogle Scholar
  33. 33.
    Khalili M, Tavakkoli-Moghaddam R (2012) A multi-objective electromagnetism algorithm for a bi-objective flowshop scheduling problem. J Manuf Syst 31:232–239CrossRefGoogle Scholar
  34. 34.
    Lee C-H, Chang F-K, Lee Y-C (2010) An improved electromagnetism-like algorithm for recurrent neural fuzzy controller design. Int J Fuzzy Syst 12:280–290MathSciNetGoogle Scholar
  35. 35.
    Abed IA, Koh SP, Sahari KSM, Tiong SK, Tan NM (2013) Optimization of task scheduling for single-robot manipulator using pendulum-like with attraction-repulsion mechanism algorithm and genetic algorithm. Aust J Basic Appl Sci 7:426–445Google Scholar
  36. 36.
    Abed IA, Sahari KSM, Koh SP, Tiong SK, Jagadeesh P (2013) Using Electromagnetism-like algorithm and genetic algorithm to optimize time of task scheduling for dual manipulators. In: 2013 IEEE Region 10 on Humanitarian Technology Conference (R10-HTC), pp 192–197Google Scholar
  37. 37.
    Abed IA, Koh SP, Sahari KSM, Tiong SK, Tan NM (2014) Solving the inverse kinematics for robot manipulators using modified electromagnetism-like algorithm with record to record travel. Res J Appl Sci Eng Technol 7:3986–3994Google Scholar
  38. 38.
    Kan AR, Timmer G (1987) Stochastic global optimization methods part I: clustering methods. Math Program 39:27–56CrossRefzbMATHGoogle Scholar
  39. 39.
    Törn A, Viitanen S (1994) Topographical global optimization using pre-sampled points. J Global Optim 5:267–276MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Cowan EW (1968) Basic electromagnetism. Academic Press, New YorkGoogle Scholar
  41. 41.
    Sinnott RK (2005) Chemical engineering, chemical engineering design. Heinemann, ButterworthGoogle Scholar
  42. 42.
    Incorpera FP, DeWitt DP, Bergman TL, Lavine AS (1996) Fundamentals of heat and mass transfer. Wiley, HobokenGoogle Scholar
  43. 43.
    Kakac S, Liu H, Pramuanjaroenkij A (2012) Heat exchangers: selection, rating, and thermal design. CRC Press, Boca RatonzbMATHGoogle Scholar
  44. 44.
    Bennett CO, Myers JE (1962) Momentum, heat, and mass transfer. McGraw-Hill, New YorkGoogle Scholar
  45. 45.
    Sinnott R (2005) Heat transfer equipment, Coulson & Richardson’s chemical engineering. Butterworth, HeinemannGoogle Scholar
  46. 46.
    Sieder EN, Tate GE (1936) Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem 28:1429–1435CrossRefGoogle Scholar
  47. 47.
    Hewitt GF (1998) Heat exchanger design handbook. Begell House, New YorkGoogle Scholar
  48. 48.
    Lestina T, Serth RW (2010) Process heat transfer: principles, applications and rules of thumb. Academic Press, Kingsville, TX, USAGoogle Scholar
  49. 49.
    Taal M, Bulatov I, Klemeš J, Stehlı́k P (2003) Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Appl Therm Eng 23:1819–1835CrossRefGoogle Scholar
  50. 50.
    Kern DQ (1950) Process heat transfer. McGraw-Hill, New YorkGoogle Scholar
  51. 51.
    Xie GN, Sunden B, Wang QW (2008) Optimization of compact heat exchangers by a genetic algorithm. Appl Therm Eng 28:895–906. doi: 10.1016/j.applthermaleng.2007.07.008 CrossRefGoogle Scholar
  52. 52.
    Antonio C, Caputo PMP, Salini Paolo (2011) Joint economic optimization of heat exchanger design and maintenance policy. Appl Therm Eng 31:1381–1392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Azher M. Abed
    • 1
    • 2
    Email author
  • Issa Ahmed Abed
    • 3
  • Hasan Sh. Majdi
    • 2
  • Ali Najah Al-Shamani
    • 1
  • K. Sopian
    • 1
  1. 1.Solar Energy Research Institute (SERI)Universiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Department of Air Conditioning and RefrigerationAl-Mustaqbal University CollegeBabylonIraq
  3. 3.Engineering Technical College BasrahSouthern Technical UniversityBasrahIraq

Personalised recommendations