Skip to main content
Log in

Determination of drying kinetics and convective heat transfer coefficients of ginger slices

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient (R 2), reduced Chi-square (χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick’s diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10−10 to 6.977 × 10−10 m2/s and 19.313–22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33–2.11 W/m2 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a, b, c, g, h, n :

Empirical constants in the drying models

A t :

Area of tray (m2)

C :

Constant

C v :

Specific heat of humid air (J/kg °C)

D eff :

Effective diffusivity (m2/s)

D 0 :

Constant in Arrhenius equation (m2/s)

E a :

Activation energy (kJ/mol)

h c :

Convective heat transfer coefficient (W/m2 °C)

k, k o , k 1 :

Empirical coefficients in the drying models (s−1)

K v :

Thermal conductivity of humid air (W/m °C)

K :

Slope

L :

Slab thickness (m)

\( \dot{m}_{ev} \) :

Moisture evaporated (kg)

M :

Moisture content (dry basis)

M e :

Moisture content in equilibrium state (dry basis)

M o :

Moisture content at t = 0 (dry basis)

M t :

Moisture content at t (dry basis)

MR :

Moisture ratio (dimensionless)

MR exp :

Experimental moisture ratio (dimensionless)

MR pre :

Predicted moisture ratio (dimensionless)

n :

Number constants, constant

N :

Number of observations

Nu :

Nusselt number (Nu = h c X/K v )

Pr :

Prandtl number (Pr = μ v C v /K v )

P(T):

Partial vapour pressure at temperature T (N/m2)

\( \dot{Q}_{e} \) :

Rate of heat utilized to evaporate moisture (J/m2 s)

r :

Diffusion path (m)

R :

Gas consant (kJ/mol K)

R 2 :

Determination coefficient

Re :

Reynolds number (Re = ρvvd/μv)

RMSE :

Root mean square error

t :

Time (sec, h, min)

T :

Temperature (°C)

T c :

Product temperature (°C)

T e :

Exit air temperature (°C)

T i :

Average of product and humid air temperature (°C)

X :

Characteristic dimension (m)

Β :

Coefficient of volumetric expansion (1/°C)

γ:

Relative humidity (°)

λ:

Latent heat of vaporization (J/kg)

\( \mu_{v} \) :

Dynamic viscosity of humid air (kg/m s)

\( \rho_{v} \) :

Density of humid air (kg/m3)

χ 2 :

Chi-square

References

  1. Schweiggert U, Hofmann S, Reichel M, Schieber A, Carle R (2008) Enzyme-assisted liquefaction of ginger rhizomes (Zingiber officinale Rosc.) for the production of spray-dried and paste-like ginger condiments. J Food Eng 84:28–38

    Article  Google Scholar 

  2. Phoungchandang S, Saentaweesuk S (2011) Effect of two stage, tray and heat pump assisted-dehumidified drying on drying characteristics and qualities of dried ginger. Food Bioprod Process 89:429–437

    Article  Google Scholar 

  3. Sahin AZ, Dincer I (2005) Prediction of drying times for irregular shaped multidimensional moist solids. J Food Eng 71:119–126

    Article  Google Scholar 

  4. Doymaz I (2012) Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy Convers Manag 56:199–205

    Article  Google Scholar 

  5. McMinn WAM (2006) Thin-layer modeling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J Food Eng 72:113–123

    Article  Google Scholar 

  6. Thompson TL, Peart RM, Foster GH (1968) Mathematical simulation of corn drying—a new model. Trans ASAE 12(4):582–586

    Article  Google Scholar 

  7. Akpinar EK (2004) Experimental determination of convective heat transfer coefficient of some agricultural product in forced convection drying. Int Commun Heat Mass Transf 31(4):585–595

    Article  Google Scholar 

  8. Eze JI, Agbo K (2011) Comparative studies of sun and solar drying of peeled and unpeeled ginger. Am J Sci Ind Res 2(2):136–143

    Google Scholar 

  9. Prasad J, Vijay VK (2005) Experimental studies on drying of Zingiber officinale, Curcuma longa l. and Tinospora cordifolia in solar-biomass hybrid drier. Renew Energy 30:2097–2109

    Article  Google Scholar 

  10. Thorat ID, Mohapatra D, Sutar RF, Kapdi SS, Jagtap DD (2010) Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber officinale R.) slices. Food Bioprocess Technol. doi:10.1007/s11947-010-0429-y

    Google Scholar 

  11. Phoungchandang S, Nongsang S, Sanchai P (2009) The development of ginger drying using tray drying, heat pump–dehumidified drying, and mixed-mode solar drying. Dry Technol 27:1123–1131

    Article  Google Scholar 

  12. Alakalı J, Irtwange SV, Satimehin A (2009) Moisture adsorption characteristics of ginger slices. Cienc Tecnol Aliment 29(1):155–164

    Article  Google Scholar 

  13. Parlak N (2014) Fluidized bed drying characteristics and modeling of ginger (Zingiber officinale) slices. Heat Mass Transfer 51:1085–1095 (2015)

  14. Ganesapillai M, Miranda LR, Reddy T, Bruno M, Singh A (2011) Modeling, characterization, and evaluation of efficiency and drying indices for microwave drying of Zingiber officinale and curcuma manga. Asia Pac J Chem Eng 6:912–920

    Article  Google Scholar 

  15. Jayashree E, Visvanthan R (2013) Studies on thin layer drying characteristics of ginger (Zingiber officinale) in a mechanical tray drier journal of plantation crops. J Spices Aromat Crops 41(1):86–90

    Google Scholar 

  16. Afolabi JT, Tunde-Akintunde TY, Oyelade OJ (2014) Influence of drying conditions on the effective moisture diffusivity and energy requirements of ginger slices. J Food Res 3(5):103–112

    Article  Google Scholar 

  17. Akpinar EK (2002) The development of a cyclone type dryer for agricultural products. PhD Thesis, Firat University, Elazig, Turkey

  18. Akpinar E, Midilli A, Bicer Y (2003) Single layer drying behavior of potato slices in a convective cyclone dryer and mathematical modeling. Energy Convers Manag 44:1689–1705

    Article  Google Scholar 

  19. Mujumdar AS (1987) Handbook of industrial drying. Marcel Dekker, New York

    Google Scholar 

  20. Diamante LM, Munro PA (1993) Mathematical modelling of thin layer solar drying of sweet potato slices. Sol Energy 51:271–276

    Article  Google Scholar 

  21. Overhults DG, White HE, Hamilton HE, Ross IJ (1973) Drying soybeans with heated air. Trans ASAE 16:112–113

    Article  Google Scholar 

  22. Zhang Q, Litchfield JB (1991) An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Dry Technol 9:383–395

    Article  Google Scholar 

  23. Yaldız O, Ertekin C (2001) Thin layer solar drying of some vegetables. Dry Technol 19:583–596

    Article  Google Scholar 

  24. Henderson SM (1974) Progress in developing the thin layer drying equation. Trans ASAE 17:1167–1172

    Article  Google Scholar 

  25. Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY (1980) A model for ear corn drying. Trans ASAE 23:1261–1271

    Article  Google Scholar 

  26. Wang CY, Singh RP (1978) A single layer drying equation for rough rice. ASAE paper no: 3001

  27. Karathanos VT (1999) Determination of water content of dried fruits by drying kinetics. J Food Eng 39:337–344

    Article  Google Scholar 

  28. Verma LR, Bucklin RA, Endan JB, Wratten FT (1985) Effects of drying air parameters on rice drying models. Trans ASAE 28:296–301

    Article  Google Scholar 

  29. Midilli A, Kucuk H, Yapar Z (2002) A new model for single layer drying. Dry Technol 20(7):1503–1513

    Article  Google Scholar 

  30. Akpinar EK (2006) Determination of suitable thin layer drying curve model for some vegetables and fruits. J Food Eng 73(1):75–84

    Article  Google Scholar 

  31. Günhan T, Demir V, Hancioglu E, Hepbasli A (2005) Mathematical modelling of drying of bay leaves. Energy Convers Manag 46(11–12):1667–1679

    Article  Google Scholar 

  32. Crank J (1975) The mathematics of diffusion. Clarendon press, Oxford

    MATH  Google Scholar 

  33. Akpinar EK, Toraman S (2013) Estimation of the moisture diffusivity and activation energy in thin layer drying of ginger slices. World Acad Sci Eng Technol 78:2013-06-27

  34. Doymaz I, Ismail O (2011) Drying characteristics of sweet cherry. Food Bioprod Process 89:31–38

    Article  Google Scholar 

  35. Goyal RK, Tiwari GN (1998) Heat and mass transfer relations for crop drying. Dry Technol 16(8):1741–1754

    Article  Google Scholar 

  36. Jain D, Tiwari GN (2004) Effect of greenhouse on crop drying under natural and forced convection-I: evaluation of convective mass transfer coefficient. Energy Convers Manag 45:765–783

    Article  Google Scholar 

  37. Anwar SI, Tiwari GN (2001) Convective heat transfer coefficient of crop in forced convection drying—an experimental study. Energy Convers Manag 42:1687–1698

    Article  Google Scholar 

  38. Van Arsdel WB, Copley MJ, Margan AJ (1973) Food Dehydration. AVI Publishing Company, Westport

    Google Scholar 

  39. Belghit A, Kouhila M, Boutaleb BC (1999) Experimental study of drying kinetics of sage in a drying tunnel working in forced convection. Rev Energ Ren 2:17–26

    Google Scholar 

  40. Ndukwu MC (2009) Effect of drying temperature and drying air velocity on the drying rate and drying constant of cocoa bean. Agric Eng Int CIGR Ejournal XI:1091

Download references

Acknowledgments

Authors thank Firat University Research Foundation (FUBAP) for financial support, under Project Number 943.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebru Kavak Akpinar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akpinar, E.K., Toraman, S. Determination of drying kinetics and convective heat transfer coefficients of ginger slices. Heat Mass Transfer 52, 2271–2281 (2016). https://doi.org/10.1007/s00231-015-1729-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1729-6

Keywords

Navigation