Skip to main content
Log in

The effect of Reynolds number on transonic compressor blade rotor section

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, the effect of Reynolds number on transonic compressor blade rotor section is investigated. After passing through the first transonic compressor stages , the flow becomes remarkably compressed. In the present work, it is intended to numerically investigate the effects of the inflow Reynolds number on the unique incidence, flow losses, deviation angle, and shock position, at three different important points of “Minimum Loss” and “Choked Flow” in started conditions and “Stall Operation” in un-started conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AVDR :

\(\frac{{\rho_{out} V_{out} cos\alpha_{out} }}{{\rho_{in} V_{in} cos\alpha_{in} }}\)

C :

Chord (m)

C p :

Pressure coefficient = \(\frac{{P_{0,in} - P}}{{P_{0,in} - P_{in} }}\)

incidence :

β in  − κ in

Deviation :

β out  − κ out

k :

Turbulent kinematic energy (m2/s2)

M :

Mach number

P :

Pressure (kPa)

Re:

Reynolds number

S :

Pitch (m)

T :

Temperature (K)

t :

Thickness (m)

V :

Total velocity (m/s)

Y + :

Dimensionless wall distance

β :

Flow direction (°)

δ :

Deviation angle (°)

ε :

Turbulence dissipation

κ :

Blade angle (°)

μ :

Dynamic viscosity (kg/ms)

ρ :

Density (kg/m3)

ω :

Specific dissipation (1/s)

ϖ :

Loss coefficient = \(\frac{{P_{0,in} - P_{0,out} }}{{P_{0,in} - P_{in} }}\)

back :

Downstream of blade

in :

Inlet

out :

Outlet

0 :

Stagnation condition

References

  1. Lichtfuss H-J, Starken H (1974) Supersonic cascade flow, DFVLR sonderdruck number 376, reprinted in progress in aerospace science, vol 15. Pergamon Press Ltd

  2. Starken H, Schreiber HA (1990) Low supersonic compressor cascade MCA, AGARD-AR-275

  3. Schreiber HA, Starken H (1984) Experimental cascade analysis of a transonic compressor rotor blade section. ASME J Eng Gas Turbines Power. 106:288–294

    Article  Google Scholar 

  4. Rhoden HG (1952) Effects of Reynolds number on the through a cascade of compressor flow of blades. Aeronautical Research Council Reports and Memoranda

  5. Carter ADS, Moss CE, Green GR, Annear GG (1957) The effect of Reynolds number on the performance of a single-stage compressor. Aeronautical Research Council Reports and Memoranda

  6. Wassel AB (1968) Reynolds number effects in axial compressors. ASME J Eng Power. 90:149–156

    Article  Google Scholar 

  7. Roberts WB (1975) The experimental cascade performance of NACA compressor profiles at low Reynolds number. ASME J Eng Power 97:454–459

    Article  Google Scholar 

  8. Schreiber HA, Steinert W, Kusters B (2002) Effects of Reynolds number and free-stream turbulence on boundary layer transition in a compressor cascade. ASME J Turbomach 124:1–9

    Article  Google Scholar 

  9. Kermani MJ, Plett EG (2001) Roe scheme in generalized coordinates: part I-formulations. AIAA 2001-A:0086

    Google Scholar 

  10. Kermani MJ, Plett EG (2001) Roe scheme in generalized coordinates: part II-formulations. AIAA 2001-B:0087

    Google Scholar 

  11. Van Leer B (1979) Towards the Ultimate conserva- tion difference scheme, V, a second order Se- quel to Godunov’s method. J Comput Phys 32:110–136

    Google Scholar 

  12. Kermani MJ, Plett EG (2001-C) Modified entropy correction formula for the Roe scheme, AIAA paper # (2001), 2001-0083

  13. Bloch GS (1996) Flow losses in supersonic compressor cascades. Ph.D. Dissertation, Mechanical Engineering Deparment, Virginia Polytechnic Institute and State University, Blacksburg, VA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Beheshti Amiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti Amiri, H., Shahrabi Farahani, A. & Khazaei, H. The effect of Reynolds number on transonic compressor blade rotor section. Heat Mass Transfer 52, 2155–2165 (2016). https://doi.org/10.1007/s00231-015-1715-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1715-z

Keywords

Navigation