Skip to main content
Log in

Experimental study on performance of celdek packed liquid desiccant dehumidifier

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Dehumidifier is the main component of liquid desiccant dehumidification system. Effect of the inlet parameters on various outlet parameters of the dehumidifier is studied in the present paper with structured pads as packing material and calcium chloride as liquid desiccant to process the air. The outlet parameters are change in specific humidity, mass transfer coefficient, moisture removal rate, air temperature, solution temperature, effectiveness and the corresponding inlet process parameters; mass flow rate of air, temperature of air, temperature and flow rate of desiccant solution. It is observed that mass transfer coefficient and moisture removal rate increase with increasing mass flow rate of the air and desiccant while these parameters decrease with increasing temperature of air and desiccant solution. Dehumidifier effectiveness gets increased with increasing solution flow rate. The present investigations are compared with the results of the researchers in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A:

Area of packing (m2)

ṁ:

Mass flow rate (kg/s)

T:

Temperature (°C)

K:

Mass transfer coefficient (kg/m2 s)

w:

Uncertainty

a:

Dry air

ai:

Inlet of air

ao:

Outlet of air

av:

Average

eq:

Equilibrium

i:

Inlet

o:

Outlet

s:

Solution

si:

Inlet of solution

so:

Outlet of solution

ε:

Effectiveness

ω:

Specific humidity (kg/kg of dry air)

dω:

Change in specific humidity (kg/kg of dry air)

CFC:

Chlorofluoro carbon

CaCl2 :

Calcium chloride

DBT:

Dry bub temperature

LiBr:

Lithium bromide

LiCl:

Lithium chloride

LPH:

Liter per hour

MRR:

Moisture removal rate

RTD:

Resistance temperature detector

TEG:

Tri ethylene glycol

VCS:

Vapour compression system

WBT:

Wet bulb temperature

References

  1. Chung TW, Ghosh TK, Hines AL (1993) Dehumidification of air by aqueous lithium chloride in a packed column. Sep Sci Technol 28(1–3):533–550

    Article  Google Scholar 

  2. Chung TW, Ghosh TK, Hines AL (1995) Dehumidification of moist air with simultaneous removal of selected pollutants by triethylene glycol solutions in a packed bed absorber. Sep Sci Technol 30(7–9):1807–1832

    Article  Google Scholar 

  3. Oberg V, Goswami DY (1998) Experimental study of the heat and mass transfer in a packed bed liquid desiccant air dehumidifier. J Sol Energy Eng 120:289–297

    Article  Google Scholar 

  4. Khan AY (1994) Sensitivity analysis and component modeling of a packed-type liquid desiccant system at partial load operating conditions. Int J Energy Res 18:643–655

    Article  Google Scholar 

  5. Gandhidasan P (2004) A simplified model for air dehumidification with liquid desiccant. Sol Energy 76:09–416

    Article  Google Scholar 

  6. Chung TW, Wu H (2000) Mass transfer correlation for dehumidification of air in a packed absorber with an inverse U-shaped tunnel. Sep Sci Technol 35(10):1503–1515

    Article  Google Scholar 

  7. Chung TW (1994) Predictions of the moisture removal efficiencies for packed bed dehumidification systems. Gas Sep Purif 8(4):265–268

    Article  Google Scholar 

  8. Patnaik S, Lenz TG, Lof GOG (1990) Performance studies for an experimental solar open-cycle liquid desiccant air dehumidification system. Sol Energy 44(3):123–135

    Article  Google Scholar 

  9. Liu XH, Zhang Y, Qu KY, Jiang V (2006) Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant. Energy Convers Manage 47:2682–2692

    Article  Google Scholar 

  10. Jain S, Tripathi S, Das RS (2011) Experimental performance of a liquid desiccant dehumidification system under tropical climates. Energy Convers Manag 52(6):2461–2466. doi:10.1016/j.enconman.2010.12.052

    Article  Google Scholar 

  11. Bassuoni MM (2011) An experimental study of structured packing dehumidifier/regenerator operating with liquid desiccant. Energy 36(5):2628–2638. doi:10.1016/j.energy.2011.02.004

    Article  Google Scholar 

  12. Bakhtiar A, Fatkur R, Choi KH (2012) A novel method to evaluate the performance of liquid desiccant air dehumidifier system. Energy Build 44:39–44

    Article  Google Scholar 

  13. Narayan GP, Chehayeb KM, McGovern RK, Thiel G, Zubairyed M, Lienhard V, John H (2013) Thermodynamic balancing of the humidification dehumidification desalination system by mass extraction and injection. Intern J Heat Mass Transf 57(2):756–770

    Article  Google Scholar 

  14. Bouzenada S, Kaabi AN, Fraikin L, Leonard A (2014) Experimental study on dehumidification/regeneration of liquid desiccant: LiBr. In: 5th International Conference on Ambient Systems, Networks and Technologies (ANT-2014) 32:673–680. doi:10.1016/j.procs.2014.05.476

  15. Abdul-Wahab SA, Zurigat YH, Abu-Arabi MK (2004) Predictions of moisture removal rate and dehumidification effectiveness for structured liquid desiccant air dehumidifier. Energy 29:19–34

    Article  Google Scholar 

  16. Kumar R, Dhar PL, Jain S, Asati AK (2009) Multi absorber stand alone liquid desiccant air-conditioning systems for higher performance. Sol Energy 83:761–772

    Article  Google Scholar 

  17. Mohammad AT, Mat SB, Sulaiman MY, Sopian K, Al-abidi AA (2013) Theoretical study of the effect of liquid desiccant mass flow rate on the performance of a cross flow parallel-plate liquid desiccant-air dehumidifier. Heat Mass Transf 49:1587–1593. doi:10.1007/s00231-013-1198-8

    Article  Google Scholar 

  18. Bassuoni MM (2014) A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant. J Adv Res 5:175–182

    Article  Google Scholar 

  19. Chung TW, Luo CM (1999) Vapor pressures of the aqueous desiccants. J Chem Eng Data 44:1024–1027

    Article  Google Scholar 

  20. Factor HM, Grossman G (1980) A packed bed dehumidifier/regenerator for solar air conditioning with liquid desiccants. Sol Energy 24:541–550

    Article  Google Scholar 

  21. Sanjeev J, Dhar PL, Kaushik SC (1994) Evaluation of liquid desiccant based evaporative cooling cycles for typical hot and humid climates. Heat Recovery Syst CHP 14(6):621–632

    Article  Google Scholar 

  22. Lazzarin RM, Gasperalla A, Longo GA (1999) Chemical dehumidification by liquid desiccants: theory and experiment. Int J Refrig 22:334–347

    Article  Google Scholar 

  23. Kessling W, Laevemann E, Peltzer M (1998) Energy storage in open cycle liquid desiccant cooling systems. Int J Refrig 21(2):150–156

    Article  Google Scholar 

  24. Salarian H, Ghadamian H, Assadi MK, Ataei A (2011) An experimental and modeling study of a dehumidification tower. J Phys Sci 6(12):2852–2860

    Google Scholar 

  25. Alizadeh S, Saman WY (2002) An experiment study of forced flow solar collector/regenerator using liquid desiccant. Sol Energy 73(5):345–362

    Article  Google Scholar 

  26. Rahamah A, Elsayed MM, Najem NM (1998) A numerical solution for cooling and dehumidification of air by a falling desiccant film in parallel flow. Renew Energy 13(3):305–322

    Article  Google Scholar 

  27. Chung TW, Wu H (1998) Dehumidification of air by aqueous ethylene glycol solution in a spray tower. Sep Sci Technol 8:1213–1224

    Article  Google Scholar 

  28. Zurigat YH, Abu-Arabi MK, Abdul-Wahab SA (2004) Air dehumidification by triethylene glycol desiccant in a packed column. Energy Convers Manage 45:141–155. doi:10.1016/S0196-8904(03)00109-2

    Article  Google Scholar 

  29. Chung TW, Ghosh TK, Hines AL (1996) Comparison between random and structured packings for dehumidification of air by lithium chloride solutions in a packed column and their heat and mass transfer correlations. Ind Eng Chem Res 35:192–198

    Article  Google Scholar 

  30. Elsarrag E (2007) Moisture removal rate for air dehumidification by triethylene glycol in a structured packed column. Energy Convers Manage 48(1):327–332

    Article  Google Scholar 

  31. Dow (2003) Calcium chloride handbook: a guide to properties, forms, storage and handling. Dow Chemical Company, Michigan

    Google Scholar 

  32. Kline SJ, McClintock FA (1953) Describing uncertainties in single sample experiments. Mech Eng 75:3–8

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Punjab Technical University, Jalandhar, Head and faculty members of Mechanical Engineering Department, IET Bhaddal Ropar, Punjab for their valuable support to carry out this research. We also express our sincere thanks to respected Dr. Sanjeev Jain, Professor, IIT Delhi for providing consistent help in the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Asati, A.K. Experimental study on performance of celdek packed liquid desiccant dehumidifier. Heat Mass Transfer 52, 1821–1832 (2016). https://doi.org/10.1007/s00231-015-1704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1704-2

Keywords

Navigation