Skip to main content

Advertisement

Log in

Experimental performance investigation of a shell and tube heat exchanger by exergy based sensitivity analysis

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Heat exchangers are used extensively in many industrial branches, primarily so in chemical and energy sectors. They also have important household usage as they are used in central and local heating systems. Any betterment on heat exchangers will serve greatly in preserving our already dwindling and costly energy resources. Strong approach of exergy analysis -which helps find out where the first steps should be taken in determining sources of inefficiencies and how to remedy them- will be used as a means to this end. The maximum useful work that can be harnessed from systems relationships with its environment is defined as exergy. In this study, the inlet and outlet flow rate values of fluids and temperature of hot stream both on shell and tube parts of a shell-tube heat exchange system have been inspected and their effects on the exergy efficiency of this thermal system have been analyzed. It is seen that the combination of high tube side inlet temperature, low shell side flow rate and high tube side flow rate are found to be the optimum for this experimental system with reaching 75, 65, and 32 % efficiencies respectively. Selecting operating conditions suitable to this behavior will help to increase the overall efficiency of shell-tube heat exchange systems and cause an increment in energy conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Ex:

Exergy (kW)

G:

Gibbs free energy (kJ/kg)

H:

Enthalpy (kJ/kg)

S:

Entropy (kJ/kg K)

T:

Temperature (K, °C)

P:

Pressure (bar, atm)

c:

Specific heat (kJ/kg K)

v m :

Volume (L, m3)

x :

Composition (−)

ν :

Stoichiometric constant (−)

Q :

Heat (kW)

References

  1. Dincer I (2002) The role of exergy in energy policy making. Energy Policy 30:137–149. doi:10.1016/S0301-4215(01)00079-9

    Article  Google Scholar 

  2. Dincer I, Rosen MA (2012) Exergy: energy, environment and sustainable development, vol 64. Newnes. doi:10.1016/S0306-2619(99)00111-7

  3. Rosen MA (1999) Second-law analysis: approaches and implications. Int J Energy Res 23:415–429. doi:10.1002/(SICI)1099-114X(199904)23:5<415:AID-ER489>3.0.CO;2-7

    Article  Google Scholar 

  4. Kanoglu M, Dincer I, Cengel YA (2009) Exergy for better environment and sustainability. Environ Dev Sustain 11:971–988. doi:10.1007/s10668-008-9162-3

    Article  Google Scholar 

  5. Rosen M, Dincer I (1997) On exergy and environmental impact. Int J Energy Res 21:643–654. doi:10.1002/(sici)1099-114x(19970610)21:7<643:aid-er284>3.0.co;2-i

    Article  Google Scholar 

  6. Feng X, Zhong G, Zhu P, Gu Z (2004) Cumulative exergy analysis of heat exchanger production and heat exchange processes. Energy Fuels 18:1194–1198. doi:10.1021/ef034068m

    Article  Google Scholar 

  7. Bi Y, Wang X, Liu Y, Zhang H, Chen L (2009) Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes. Appl Energy 86:2560–2565

    Article  Google Scholar 

  8. Wu SY, Yuan XF, Li YR, Xiao L (2007) Exergy transfer effectiveness on heat exchanger for finite pressure drop. Energy 32:2110–2120

    Article  Google Scholar 

  9. Wang S, Wen J, Li Y (2009) An experimental investigation of heat transfer enhancement for a shell-and-tube heat exchanger. Appl Therm Eng 29:2433–2438

    Article  Google Scholar 

  10. Ermis K (2008) ANN modeling of compact heat exchangers. Int J Energy Res 32:581–594. doi:10.1002/er.1380

    Article  Google Scholar 

  11. Sanaye S, Hajabdollahi H (2010) Multi-objective optimization of shell and tube heat exchangers. Appl Therm Eng 30:1937–1945

    Article  Google Scholar 

  12. Hajabdollahi H, Ahmadi P, Dincer I (2012) Exergetic optimization of shell-and-tube heat exchangers using NSGA-II. Heat Transf Eng 33:618–628. doi:10.1080/01457632.2012.630266

    Article  Google Scholar 

  13. Soria-Verdugo A, Almendros-Ibrez JA, Ruiz-Rivas U, Santana D (2009) Exergy optimization in a steady moving bed heat exchanger. Ann N Y Acad Sci 1161:584–600

    Article  Google Scholar 

  14. Özçelik Y (2007) Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm. Appl Therm Eng 27:1849–1856. doi:10.1016/j.applthermaleng.2007.01.007

    Article  Google Scholar 

  15. Fettaka S, Thibault J, Gupta Y (2013) Design of shell-and-tube heat exchangers using multiobjective optimization. Int J Heat Mass Transf 60:343–354

    Article  Google Scholar 

  16. Abu-Hamdeh NH, Alnefaie KA, Almitani KH (2013) An analytical solution of the dynamics of a symmetrically operated parallel flow heat exchanger. Heat Mass Transf 49:1471–1479. doi:10.1007/s00231-013-1185-0

    Article  Google Scholar 

  17. Nafey AS (2000) Maximum entropy generation of in-series connected heat exchangers. Int J Energy Res 24:561–570. doi:10.1002/1099-114X(20000610)24:7<561:AID-ER587>3.0.CO;2-D

    Article  Google Scholar 

  18. Assad MEH (2010) Effect of maximum and minimum heat capacity rate on entropy generation in a heat exchanger. Int J Energy Res 34:1302–1308. doi:10.1002/er.1674

    Google Scholar 

  19. Ordóñez JC, Bejan A (2000) Entropy generation minimization in parallel-plates counterflow heat exchangers. Int J Energy Res 24:843–864. doi:10.1002/1099-114X(200008)24:10<843:AID-ER620>3.0.CO;2-M

    Article  Google Scholar 

  20. Najafi H, Najafi B (2010) Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm. Heat Mass Transf 46:639–647. doi:10.1007/s00231-010-0612-8

    Article  Google Scholar 

  21. Khairul MA, Saidur R, Rahman MM, Alim MA, Hossain A, Abdin Z (2013) Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids. Int J Heat Mass Transf 67:398–403. doi:10.1016/j.ijheatmasstransfer.2013.08.030

    Article  Google Scholar 

  22. Mert SO, Dincer I, Ozcelik Z (2012) Performance investigation of a transportation PEM fuel cell system. Int J Hydrogen Energy 37:623–633

    Article  Google Scholar 

  23. Kotas TJ (1980) Exergy concepts for thermal plants. Int J Heat Fluid Flow 2:105–114. doi:10.1016/0142-727X(80)90028-4

    Article  Google Scholar 

  24. Dincer I, Rosen M (2012) Environment and sustainable development. In: Exergy, 2nd edn, pp 51–73. doi:10.1016/B978-0-08-097089-9.00004-8

  25. Piechowski M (1998) Heat and mass transfer model of a ground heat exchanger: validation and sensitivity analysis. Int J Energy Res 22:965–979. doi:10.1002/(SICI)1099-114X(199809)22:11<965:AID-ER421>3.0.CO;2-G

    Article  Google Scholar 

  26. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suha Orçun Mert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mert, S.O., Reis, A. Experimental performance investigation of a shell and tube heat exchanger by exergy based sensitivity analysis. Heat Mass Transfer 52, 1117–1123 (2016). https://doi.org/10.1007/s00231-015-1636-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1636-x

Keywords

Navigation