Skip to main content
Log in

Thermal performance of plate-fin heat exchanger using passive techniques: vortex-generator and nanofluid

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This experimental study investigates the effects of vortex-generator (VG) and Cu/water nanofluid flow on performance of plate-fin heat exchangers. The Cu/water nanofluids are produced by using a one-step method, namely electro-exploded wire technique, with four nanoparticles weight fractions (i.e. 0.1, 0.2, 0.3, and 0.4 %). Required properties of nanofluids are systematically measured, and empirical correlations are developed. A highly precise test loop is fabricated to obtain accurate results of the heat transfer and pressure drop characteristics. Experiments are conducted for nanofluids flow inside the plain and VG channels. Based on the experimental results, utilizing the VG channel instead of the plain channel enhances the heat transfer rate, remarkably. Also, the results show that the VG channel is more effective than the nanofluid on the performance of plate-fin heat exchangers. It is observed that the combination of the two heat transfer enhancement techniques has a noticeably high thermal–hydraulic performance, about 1.67. Finally, correlations are developed to predict Nusselt number and friction factor of nanofluids flow inside the VG channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A c :

Minimum free flow area (m2)

A ch.f :

Total surface area in contact with working fluid (m2)

C p :

Specific heat (J kg−1 K−1)

D h :

Hydraulic diameter (m)

F h :

Channel height (m)

F p :

Channel pitch (m)

G :

Mass velocity (kg m−2 s−1)

h :

Effective heat transfer coefficient (W m−2 K−1)

L :

Channel length (m)

M :

Number of the independent variables

m :

Mass flow rate (kg s−1)

Q conv :

Convective heat transfer rate (W)

T :

Temperature (K)

t :

Channel thickness (m)

\( \dot{V} \) :

Volumetric flow rate (m3 s−1)

V h :

Vortex height (m)

V l :

Longitudinal vortex spacing (m)

V t :

Transverse vortex spacing (m)

∆P :

Pressure drop (Pa)

R :

Dependent variable

R 2 :

Coefficient of determination

∆T :

Temperature difference (K)

X :

Independent variables

α :

Angle of attack (°)

ρ :

Density (kg m−3)

μ :

Dynamic viscosity (Pa s)

κ :

Thermal conductivity (W m−1 K−1)

φ :

Nanoparticle weight fraction

j :

Colburn factor = Nu/RePr 1/3

JF :

Thermal–hydraulic performance factor = (j VGC /j PC )/(f VGC /f PC )1/3

f :

Fanning friction factor = ρD h ∆P/2LG 2

Nu :

Nusselt number = hD h /κ

Pr :

Prandtl number = μC p /κ

Re :

Reynolds number = GD h /μ

St :

Stanton number = h/GC p

BF :

Base fluid

NF :

Nanofluid

PC :

Plain channel

DW:

Deionized-water

EEW:

Electro-exploded wire

PEC:

Performance evaluation criteria

PFHE:

Plate-fin heat exchangers

PI:

Process intensification

TEM:

Transmission electron microscope

THW:

Transient hot-wire

VG:

Vortex-generator

References

  1. Stankiewicz A, Moulijn JA (2004) Re-engineering the chemical processing plant: process intensification. Marcel Dekker, New York

    Google Scholar 

  2. Bergles AE (1983) Augmentation of heat transfer, heat exchanger design handbook. Hemisphere Publishing Company, Washington

    Google Scholar 

  3. Brockmeier U, Guentermann Th, Fiebig M (1993) Performance evaluation of a vortex generator heat transfer surface and comparison with different high performance surfaces. Int J Heat Mass Transf 36(10):2575–2587

    Article  Google Scholar 

  4. Khalil I, Heiba AA, Boehm R (2008) Comparison of plate fin compact heat exchanger performance. In: ASME international mechanical engineering congress and exposition

  5. Biswas G, Chattopadhyay H (1992) Heat transfer in channel with built-in wing-type vortex generators. Int J Heat Mass Transf 35(4):803–8014

    Article  MATH  Google Scholar 

  6. Zhu JX, Fiebig M, Mitra NK (1995) Numerical investigation of turbulent flows and heat transfer in a rib-roughened channel with longitudinal vortex generators. Int J Heat Mass Transf 38(3):495–501

    Article  MATH  Google Scholar 

  7. Wang Q, Chen Q, Wang L, Zeng M, Huang Y, Xiao Z (2007) Experimental study of heat transfer enhancement in narrow rectangular channel with longitudinal vortex generators. Nucl Eng Des 237(7):686–693

    Article  Google Scholar 

  8. Wu JM, Tao QW (2008) Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator, Part A: verification of field synergy principle. Int J Heat Mass Transf 51(5–6):1179–1191

    Article  MATH  Google Scholar 

  9. Wu JM, Tao WQ (2008) Numerical study on laminar convection heat transfer in a channel with longitudinal vortex generator, Part B: parametric study of major influence factors. Int J Heat Mass Transf 51(13–14):3683–3692

    Article  MATH  Google Scholar 

  10. Min C, Qi C, Kong X, Dong J (2010) Experimental study of rectangular channel with modified rectangular longitudinal vortex generators. Int J Heat Mass Transf 53(15–16):3023–3029

    Article  Google Scholar 

  11. Habchi C, Russeil S, Bougeard D, Harion JL, Lemenand T, Valle DD, Peerhossaini H (2012) Enhancing heat transfer in vortex generator-type multifunctional heat exchangers. Appl Therm Eng 38:14–25

    Article  Google Scholar 

  12. Gentry MC, Jacobi AM (1997) Heat transfer enhancement by delta-wing vortex generators on a flat plate: vortex interactions with the boundary layer. J Exp Therm Fluid Sci 14(3):231–242

    Article  Google Scholar 

  13. Leu JS, Wu YH, Jang JY (2004) Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. Int J Heat Mass Transf 47(19–20):4327–4338

    Article  Google Scholar 

  14. Ferrouillat S, Tochon P, Garnier C, Peerhossaini H (2006) Intensification of heat transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity. Appl Therm Eng 26(16):1820–1829

    Article  Google Scholar 

  15. Tian LT, He YL, Lei YG, Tao WQ (2009) Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis. Int Commun Heat Mass Transf 36(2):111–120

    Article  Google Scholar 

  16. Zhou G, Ye Q (2012) Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators. Appl Therm Eng 37:241–248

    Article  MathSciNet  Google Scholar 

  17. Wu JM, Tao WQ (2012) Effect of longitudinal vortex generator on heat transfer in rectangular channels. Appl Therm Eng 37:67–72

    Article  Google Scholar 

  18. Chen Y, Fiebig M, Mitra NK (1998) Conjugate heat transfer of a finned oval tube with a punched longitudinal vortex generator in form of a delta winglet-parametric investigations of the winglet. Int J Heat Mass Transf 41(23):3961–3978

    Article  MATH  Google Scholar 

  19. Chen Y, Fiebig M, Mitra NK (2000) Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators. Int J Heat Mass Transf 43(3):417–735

    Article  MATH  Google Scholar 

  20. Torii K, Kwak KM, Nishino K (2002) Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers. Int J Heat Mass Transf 45(18):3795–3801

    Article  Google Scholar 

  21. Kwak KM, Torii K, Nishino K (2003) Heat transfer and pressure loss penalty for the number of tube rows of staggered finned-tube bundles with a single transverse row of winglets. Int J Heat Mass Transf 46(1):175–180

    Article  Google Scholar 

  22. Allison CB, Dally BB (2007) Effect of a delta-winglet vortex pair on the performance of a tube-fin heat exchanger. Int J Heat Mass Transf 50:5056–5072

    Article  Google Scholar 

  23. Wu JM, Tao WQ (2007) Investigation on laminar convection heat transfer in fin-and-tube heat exchanger in aligned arrangement with longitudinal vortex generator from the viewpoint of field synergy principle. Appl Therm Eng 27(14–15):2609–2617

    Article  MathSciNet  Google Scholar 

  24. Chu P, He YL, Lei YG, Tian LT, Li R (2009) Three-dimensional numerical study on fin-and-oval-tube heat exchanger with longitudinal vortex generators. Appl Therm Eng 29(5–6):859–876

    Article  Google Scholar 

  25. Zeng M, Tang LH, Lin M, Wang QW (2010) Optimization of heat exchangers with vortex-generator fin by taguchi method. Appl Therm Eng 30(13):1775–1783

    Article  Google Scholar 

  26. Li J, Wang S, Chen J, Lei YG (2011) Numerical study on a slit fin-and-tube heat exchanger with longitudinal vortex generators. Int J Heat Mass Transf 54(9–10):1743–1751

    Article  MATH  Google Scholar 

  27. Yang KS, Li SL, Chen IY, Chien KH, Hu R, Wang CC (2010) An experimental investigation of air cooling thermal module using various enhancements at low Reynolds number region. Int J Heat Mass Transf 53(25–26):5675–5681

    Article  Google Scholar 

  28. Yang KS, Jhong JH, Lin YT, Chien KH, Wang CC (2010) On the heat transfer characteristics of heat sinks: with and without vortex generators. IEEE Trans Compon Packag Technol 33(2):391–397

    Article  Google Scholar 

  29. Chomdee S, Kiatsiriroat T (2006) Enhancement of air cooling in staggered array of electronic modules by integrating delta winglet vortex generators. Int Commun Heat Mass Transf 33(5):618–626

    Article  Google Scholar 

  30. Chomdee S, Kiatsiriroat T (2007) Air-cooling enhancement with delta winglet vortex generators in entrance region of in-line array electronic modules. J Heat Transf Eng 28(4):372–379

    Article  Google Scholar 

  31. Ma J, Huang YP, Huang J, Wang YL, Wang QW (2010) Experimental investigations on single-phase heat transfer enhancement with longitudinal vortices in narrow rectangular channel. Nucl Eng Des 240(1):92–102

    Article  Google Scholar 

  32. Liu C, Teng JT, Chu JC, Chiu YL, Huang S, Jin S, Dang T, Greif R, Pan HH (2011) Experimental investigation on liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators. Int J Heat Mass Transf 54(13–14):3069–3080

    Article  Google Scholar 

  33. Ahmed HE, Mohammed HA, Yusoff MZ (2012) An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sustain Energy Rev 16:5951–5993

    Article  Google Scholar 

  34. Ahmed HE, Mohammed HA, Yusoff MZ (2012) Heat transfer enhancement of laminar nanofluids flow in a triangular duct using vortex generator. Superlattices Microstruct 52:398–415

    Article  Google Scholar 

  35. Murshed SMS, Leong KC, Yang C (2008) Thermophysical and electrokinetic properties of nanofluids—a critical review. Appl Therm Eng 28(17–18):2109–2125

    Article  Google Scholar 

  36. Liu MS, Lin MCC, Tsai CY, Wang CC (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49(17–18):3028–3033

    Article  Google Scholar 

  37. Wang CC, Lo J, Lin YT, Liu MS (2002) Flow visualization of wave-type vortex generators having inline fin-tube arrangement. Int J Heat Mass Transf 45(9):1933–1944

    Article  Google Scholar 

  38. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8

    Google Scholar 

  39. Yun JY, Lee KS (2000) Influence of design parameters on the heat transfer and flow friction characteristics of the heat transfer with slit fins. Int J Heat Mass Transf 43(14):2529–2539

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to express their thanks to University of Semnan and Materials and Energy Research Center for their financial supports through the set-up fabrication and research implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Khoshvaght-Aliabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshvaght-Aliabadi, M. Thermal performance of plate-fin heat exchanger using passive techniques: vortex-generator and nanofluid. Heat Mass Transfer 52, 819–828 (2016). https://doi.org/10.1007/s00231-015-1603-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1603-6

Keywords

Navigation