Skip to main content

Vacuum contact drying kinetics of Jack pine wood and its influence on mechanical properties: industrial applications

Abstract

Wood can be dried rapidly using combined contact heating and low vacuum. However, the impact on Jack pine wood drying and its mechanical strength remains unclear. The aim of this paper was to determine the kinetics of vacuum contact drying of Jack pine (Pinus banksiana) wood boards (dimensions 50 × 100 × 2480 mm3) under various drying temperatures and vacuum pressures at a pilot scale. Drying temperatures and vacuum pressures ranged from 65 to 95 °C and from 169.32 to 507.96 mbar, respectively. Dried samples were subjected to flexural loading to determine mechanical strength. Results indicated that drying time decreased with higher drying temperature and vacuum pressure, where as decreased vacuum pressure increased the temperature of wood samples at a constant drying temperature. Results also indicated that the mechanical properties of dried samples were affected by drying temperature, vacuum pressure, and lumber grade. Mechanical test results were then compared to those for a conventional drying process, revealing that vacuum contact drying do not have a negative impact on the wood mechanical properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

DM:

Dry matter

DS:

Drying schedule

MOE:

Modulus of elasticity (MPa)

MOR:

Modulus of rupture (MPa)

MOM:

Maximal strength (MPa)

H:

Humidity of wood (%)

M:

Mass (kg)

T:

Temperature (°C)

X:

Moisture content (kg water/kg dry matter)

n:

Samples number

RH:

Relative humidity (%)

StdDev:

Standard deviation

AVG:

Average

\(\Delta {\text{t}}\) :

Time interval

d:

Dry

dim:

Dimension less

h:

Humid

i:

Initial

t:

Time

References

  1. 1.

    Ding WD, Koubaa A, Chaala A (2013) Mechanical properties of MMA-hardened hybrid poplar wood. Ind Crops Prod 46:304–310

    Article  Google Scholar 

  2. 2.

    Nadeau JP, Pigualli JR (1995) Séchage: des processus physiques aux procédés industriels. Tec & Doc Lavoisier, Paris

    Google Scholar 

  3. 3.

    Reuss M, Benkert S, Aeberhard A, Martina P, Raush GB, Rentzell V, Sogari N (1997) Modelling and experimental investigation of a pilot plant for solar wood drying. Sol Energy 59:259–270

    Article  Google Scholar 

  4. 4.

    Remond R (2004) Approche déterministe du séchage des avivés de résineux de fortes épaisseurs pour proposer des conduites industrielles adaptées. PhD thesis, École Nationale du Génie Rural, des Eaux et des Forêts, Centre de Nancy, France

  5. 5.

    Martinovic D, Horman I, Demirdzic I (2006) Numerical and experimental analysis of a wood drying process. Wood Sci Technol 35:143–156

    Google Scholar 

  6. 6.

    Ouertani S, Azzouz S, Hassini L, Belghith A (2011) Palm wood drying and optimization of the processing parameters. Wood Mater Sci Eng 6:75–90

    Article  Google Scholar 

  7. 7.

    Leiker M, Adamska MA (2004) Energy efficiency and drying rates during vacuum microwave drying of wood. Holz Roh Werkst 62:203–208

    Article  Google Scholar 

  8. 8.

    Simpson W, Tenwold A (1999) Physical properties and moisture relations of wood. In: Ross RJ (ed) Wood handbook, USDA Forest service, Forest product laboratory, vol 3, Madison, WI, USA, pp 1–23

  9. 9.

    Rosen HN (2006) Drying of wood and wood products. In: Mujumdar AS (ed) Handbook of industrial drying. Marcel Dekker, New York, p 1987

    Google Scholar 

  10. 10.

    Jung HS, Eom CD, So BJ (2004) Comparison of vacuum drying characteristics of Radiata pine timber using different heating methods. Dry Technol 22:1005–1022

    Article  Google Scholar 

  11. 11.

    Torres SS, Jomaa W, Puiggali JR, Avramidis S (2011) Multiphysics modeling of vacuum drying of wood. Appl Math Model 35:5006–5016

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Ressel BJ (1994) State-of-the-art on vacuum drying of timber. In: Proceedings of the fourth international IUFRO wood drying conference, Rotorua, New Zealand, 255–262

  13. 13.

    Defo M (1999) Modélisation du séchage du bois sous vide par contact: L’approche du potentiel hydrique. PhD thesis, Université Laval, Canada

  14. 14.

    Chen Z (1997) Primary driving force in wood vacuum drying. PhD thesis, Polytechnic Institute and State University, Virginia

  15. 15.

    Moyne C, Martin M (1982) Etude expérimentale du transfert simultané de chaleur et de masse au cours du séchage par contact sous-vide d’un bois résineux. Int J Heat Mass Transf 25:1839–1848

    Article  Google Scholar 

  16. 16.

    Fortin Y, Defo M, Nabhani M, Trembay C, Gendr G (2004) A simulation tool for the optimization of lumber drying schedules. Dry Technol 22:963–983

    Article  Google Scholar 

  17. 17.

    Perré P, Mosnier S, Turner IW (2004) Vacuum drying of wood with radiative heating: I. Experimental procedure. AICE J 50:97–107

    Article  Google Scholar 

  18. 18.

    Pérré P, Turner IW (2006) Dual-scale model for describing drier and porous medium interactions. AICE J 9:3109–3117

    Article  Google Scholar 

  19. 19.

    Torres SS, Rodríguez-Ramírez J, Méndez-Lagunas LL (2011) Modeling plain vacuum drying by considering a dynamic capillary pressure. Chem Biochem Eng 25:327–334

    Google Scholar 

  20. 20.

    Redam A (2011) Evaluation of super-heated steam vacuum drying viability and development of a predictive drying model for four Australian hardwood species. Forest and Wood Products Australia Limited Rept, PNB 045-0809

  21. 21.

    Wallace JW, Hartley ID, Avramidis S, Oliveira LC (2003) Conventional kiln drying and equalization of Western hemlock (Tsugaheterophylla (Raf.)[Sarg]) to Japanese equilibrium moisture content. Holz als Roh- und Werkstoff 61:257–263

    Article  Google Scholar 

  22. 22.

    Aléon D, Chanrion P, Négrié G, Perez J, Snieg O (2001) Séchage du bois: guide pratique. CTBA, Paris

    Google Scholar 

  23. 23.

    Perré P, Keey BR (2006) Drying of wood: principles and practices. In: Mujumdar AS (ed) Handbook of industrial drying, 3rd Edn. Taylor & Francis Group LLC, London pp 822–872

  24. 24.

    Diawanich P, Matan N, Kyokong B (2010) Evolution of internal stress during drying, cooling and conditioning of rubber wood lumber. Eur J Wood Prod 68:1–12

    Article  Google Scholar 

  25. 25.

    Ouertani S, Azzouz S, Hassini L, Koubaa A, Belghith A (2014) Moisture sorption isotherms and thermodynamic properties of Jack pine and Palm wood: comparative study. Ind Crops Prod 56:200–210

    Article  Google Scholar 

  26. 26.

    Rémond R, Passard J, Perré P (2007) The effect of temperature and moisture content on the mechanical behaviour of wood: a comprehensive model applied to drying and bending. Eur J Mech A/Solids 26:558–572

    Article  MATH  Google Scholar 

  27. 27.

    Hassini L, Peczalski R, Gelet JL (2013) Combined convective and microwave drying of agglomerated sand: internal transfer modeling with the gas pressure effect. Dry Technol 31:898–904

    Article  Google Scholar 

  28. 28.

    Charron S, Jourez B, Marchal M, Hébert J (2003) Étude comparative des caractéristiques physiques et mécaniques du bois des mélèzes d’Europe (Larix decidua Mill.), du Japon (Larix kaempferi (Lambert) Carr.) et de leur hybride (Larix x eurolepis Henry). Biotechnol Agron Soc Environ 7:5–16

    Google Scholar 

  29. 29.

    Remond R, Mougel M, Perré P (2003) Experimental determination of thickness, surface checking and temperature on thin and thick spruce boards during convective drying. In: Proceedings of the 8th international IUFRO wood drying conference

  30. 30.

    McMillen J M (1958) Stress in wood during drying, in forest products laboratory, Forest Service U. S. Department of Agriculture Rept

  31. 31.

    Basilco C, Martin M (1983) Approche expérimentale des mécanismes de transfert au cours du séchage convectif à haute température d’un bois résineux. Int J Heat Mass Transf 27:657–668

    Article  Google Scholar 

  32. 32.

    ASTM D2016-74 (1984) American Society for testing and materials, standard test methods for moisture content of wood, ASTM D2016, Philadelphia

  33. 33.

    ASTM Standard D 143-94 (Reapproved 2000) Standard test methods for small clear specimens of timber. American Society for Testing and Materials, Philadelphia, PA, USA

  34. 34.

    Hu Q, Zhang M, Mujumdar AS, Xiao G, Sun J (2006) Drying of edamames by hot air and vacuum microwave combination. J Food Eng 77:977–982

    Article  Google Scholar 

  35. 35.

    Perré P, Joyet P, Aléon D (1995) Vacuum drying: physical requirements and practical solutions. In: Trebula (Ed) Proceedings of the Vacuum drying of wood ‘95. High Tatras, Slovak Republic

  36. 36.

    Di Blasi C (1998) Multi-phase moisture transfer in the high-temperature drying of wood particles. Chem Eng Sci 53:353–366

    Article  Google Scholar 

  37. 37.

    Lartigue C (1987) Mécanismes élémentaires mises en jeux lors du séchage du bois de Pin maritime, PhD thesis, University of Bordeaux I, France

  38. 38.

    Younsi R, Kocaefe D, Kocaefe Y (2006) Three-dimensional simulation of heat and moisture transfer in wood. Appl Therm Eng 26:1274–1285

    Article  Google Scholar 

  39. 39.

    National Lumber Grades Authority, http://nlga.org/

  40. 40.

    Shi JL, Kocaefe D, Zhang J (2007) Mechanical behaviour of Québec wood species heat-treated using ThermoWood process. Holz Roh Werkst 65:255–259

    Article  Google Scholar 

  41. 41.

    Zhiyong C, Ross RJ (2010) Mechanical properties of wood-based composite materials. In: Ross RJ (ed) Wood Handbook, Wood as an Engineering Material, General Technical Report, FPL-GTR-190. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, pp 12-1–12-12

  42. 42.

    Kowalski SJ, Smoczkiewicz-Wojciechowska A (2007) Stresses in dried wood. Modeling and experimental identification. Transp Porous Medium 66:145–158

    Article  Google Scholar 

  43. 43.

    Kocaefe D, Poncsak S, Tang J, Bouazara M (2010) Effect of heat treatment on the mechanical properties of North American Jack pine: thermogravimetric study. J Mater Sci 45:681–687

    Article  Google Scholar 

  44. 44.

    Gunay E, Sönmez M (2003) Mechanical behavior of wood under torsional and tensile loadings. G U J Sci 16:733–749

    Google Scholar 

Download references

Acknowledgments

Our thanks go to Gilles Villeneuve from the University of Québec in Abitibi-Témiscamingue and Abderrazak Zaaraoui from the University of Tunis El Manar for their technical assistance and help in carrying out the experiments. The first author acknowledges receiving financial support from the Tunisian Government and the Canada Research Chair for Wood Assessment, Development and Processing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sahbi Ouertani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ouertani, S., Koubaa, A., Azzouz, S. et al. Vacuum contact drying kinetics of Jack pine wood and its influence on mechanical properties: industrial applications. Heat Mass Transfer 51, 1029–1039 (2015). https://doi.org/10.1007/s00231-014-1476-0

Download citation

Keywords

  • Wood Sample
  • Wood Species
  • Initial Moisture Content
  • Vacuum Pressure
  • Wood Board