Skip to main content

Advertisement

Log in

Lattice Boltzmann simulation on liquid flow and mass transport in a bioreactor with cylinder bundle for hydrogen production

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The lattice Boltzmann method is adopted to simulate hydrodynamics and mass transfer accompanying with biochemical reaction in a channel with cylinder bundle, which is the scenario of biohydrogen production by photosynthetic bacteria in the biofilm attached on the surface of cylinder bundle in photobioreactor. The effects of cylinder spacing, Reynolds number and cylinder arrangement are investigated. The numerical results reveal that highest glucose concentration and the lowest hydrogen concentration are obtained at the front of the first row cylinders for all cases. The staggered arrangement leads to an increment in average drag coefficient, Sherwood number and consumption efficiency of substrate under a given condition, and the increment in Sherwood number reaches up to 30 %, while that in drag coefficient is around 1 %, moreover, the increment in consumption efficiency reaches the maximum value of 12 %. The results indicate that the staggered arrangement is beneficial to the mass transfer and biochemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

c :

Lattice speed (m s−1)

C x :

Cell density (kg m−3)

D :

Cylinder diameter (m)

D σ :

Diffusivity coefficient of σ-species (m2 s−1)

C D :

Drag coefficient

e i :

Discrete particle velocity in LBE model (m s−1)

\(f_{i} , { }f_{i}^{eq}\) :

Density distribution function and corresponding equilibrium distribution function of the ith discrete velocity

\(f_{i}^{ + } ({\mathbf{x}}_{w} ,t)\) :

Post-collision distribution function at the node x w

\(\overline{{f_{i}^{eq} }} \left( {{\mathbf{x}}_{w} } \right)\) :

Approximated equilibrium part at the node x w

F :

The total force acted on the fluid by the solid body (J m−1)

\(g_{i,\sigma } , { }g_{i,\sigma }^{{^{eq} }}\) :

Concentration distribution function and corresponding equilibrium distribution function of σ-species

J 0 :

Rest fraction

J i,σ , K i :

Specially chosen constants

k s :

Monod constant (kg m−3)

Ma:

Mach number

p :

Fluid pressure (Pa)

Pe:

Peclet number

Re:

Reynolds number

r σ :

React rate of σ-species (kg m−3 s−1)

R σ :

Dimensionless react source term of σ-species

Sc:

Schmidt number

Sh:

Sherwood number

t :

Time (s)

u :

Flow velocity (m s−1)

\(\overline{{{\mathbf{u}}_{w} }}\) :

Approximation of velocity at node x w (m s−1)

s 1, s 2 :

Horizontal and vertical cylinder spacings (m)

S 1, S 2 :

Dimensionless horizontal and vertical cylinder spacings

x :

Cartesian position vector (m)

Y x/s :

Cell yield

α :

Specific area (m−1)

Δ:

Fraction of the intersected link in the fluid region, \(\Delta = | {{\mathbf{x}}_{f} - {\mathbf{x}}_{b} } |/| {{\mathbf{x}}_{f} - {\mathbf{x}}_{w} } |\)

δ t :

Time space (s)

δ x :

Lattice space (m)

ν :

Kinematical viscosity (m2 s−1)

ρ :

Flow density (kg m−3)

\(\overline{{\rho_{w} }}\) :

Approximation of density at the node x w (kg m−3)

τ ν :

Dimensionless relaxation time

τ σ :

Dimensionless relaxation time related to the diffusion coefficient

w i :

Weight coefficient

μ max :

Maximum specific growth rate (s−1)

η :

Substrate consumption efficiency per cylinder’s surface

References

  1. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  Google Scholar 

  2. Goltsov VA, Veziroglu TN, Goltsova LF (2006) Hydrogen civilization of the future–A new conception of the IAHE. Int J Hydrogen Energy 31:153–159

    Article  Google Scholar 

  3. Chen CY, Chang JS (2006) Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. Process Biochem 41:2041–2049

    Article  Google Scholar 

  4. Lin CN, Wu SY, Chang JS (2006) Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. Int J Hydrogen Energy 31:2200–2210

    Article  Google Scholar 

  5. Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ (2008) Biohydrogen production with anaerobic fluidized bed reactors—a comparison of biofilm-based and granule-based systems. Int J Hydrogen Energy 33:1559–1564

    Article  Google Scholar 

  6. Tian X, Liao Q, Zhu X, Wang Y, Zhang P, Li J, Wang H (2010) Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresour Technol 101:977–983

    Article  Google Scholar 

  7. Wang YZ, Liao Q, Zhu X, Tian X, Zhang C (2010) Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor. Bioresour Technol 101:4034–4041

    Article  Google Scholar 

  8. Zhang C, Zhu X, Liao Q, Wang Y, Li J, Ding Y, Wang H (2010) Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. Int J Hydrogen Energy 35:5284–5292

    Article  Google Scholar 

  9. Liao Q, Liu DM, Ye DD, Zhu X, Lee DJ (2011) Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor. Int J Hydrogen Energy 36:13939–13948

    Article  Google Scholar 

  10. Das D, Badri PK, Kumar N, Bhattacharya P (2002) Simulation and modeling of continuous H2 production process by Enterobacter cloacae IIT-BT 08 using different bioreactor configuration. Enzyme Microb Technol 31:867–875

    Article  Google Scholar 

  11. Chang C, Liu CH, Lin CA (2009) Boundary conditions for lattice Boltzmann simulations with complex geometry flows. Comput Math Appl 58:940–949

    Article  MATH  MathSciNet  Google Scholar 

  12. Pomeau Y (2007) 20 years of lattice dynamics: a personal view. Int J Mod Phys C 18:437

    Article  MATH  MathSciNet  Google Scholar 

  13. Raabe D (2004) Overview of the lattice Boltzmann method for nano-and microscale fluid dynamics in materials science and engineering. Model Simul Mater Sci Eng 12:R13

    Article  Google Scholar 

  14. Dupin MM, Halliday I, Care CM, Alboul L, Munn LL (2007) Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys Rev E 75:066707

    Article  Google Scholar 

  15. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863

    Article  MATH  Google Scholar 

  16. He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J Comput Phys 152:642–663

    Article  MATH  MathSciNet  Google Scholar 

  17. Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815

    Article  Google Scholar 

  18. Yang ZL, Dinh TN, Nourgaliev RR, Sehgal BR (2001) Numerical investigation of bubble growth and detachment by the lattice-Boltzmann method. Int J Heat Mass Transf 44:195–206

    Article  MATH  Google Scholar 

  19. Gabrielli A, Succi S, Kaxiras E (2002) A lattice Boltzmann study of reactive microflows. Comput Phys Commun 147:516–521

    Article  MATH  Google Scholar 

  20. Tian Z-W, Zou C, Liu H-J, Guo Z-L, Liu Z-H, Zheng C-G (2007) Lattice Boltzmann scheme for simulating thermal micro-flow. Phys A 385:59–68

    Article  Google Scholar 

  21. Li Q, Zhao K, Xuan YM (2011) Simulation of flow and heat transfer with evaporation in a porous wick of a CPL evaporator on pore scale by lattice Boltzmann method. Int J Heat Mass Transf 54:2890–2901

    Article  MATH  Google Scholar 

  22. Yan YY, Zu YQ (2008) Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—a LBM approach. Int J Heat Mass Transf 51:2519–2536

    Article  MATH  Google Scholar 

  23. Jeong N, Choi DH, Lin CL (2008) Estimation of thermal and mass diffusivity in a porous medium of complex structure using a lattice Boltzmann method. Int J Heat Mass Transf 51:3913–3923

    Article  MATH  Google Scholar 

  24. Onishi J, Chen Y, Ohashi H (2006) Dynamic simulation of multi-component viscoelastic fluids using the lattice Boltzmann method. Phys A 362:84–92

    Article  Google Scholar 

  25. Shan X, Doolen G (1996) Diffusion in a multicomponent lattice Boltzmann equation model. Phys Rev E 54:3614

    Article  Google Scholar 

  26. Verma N, Mewes D, Luke A (2010) Lattice Boltzmann study of velocity, temperature, and concentration in micro-reactors. Int J Heat Mass Transf 53:3175–3185

    Article  MATH  Google Scholar 

  27. Yu X, Shi B (2006) A lattice Boltzmann model for reaction dynamical systems with time delay. Appl Math Comput 181:958–965

    Article  MATH  MathSciNet  Google Scholar 

  28. Sullivan SP, Sani FM, Johns ML, Gladden LF (2005) Simulation of packed bed reactors using lattice Boltzmann methods. Chem Eng Sci 60:3405–3418

    Article  Google Scholar 

  29. Sullivan SP, Gladden LF, Johns ML (2006) 3D chemical reactor LB simulations. Math Comput Simul 72:206–211

    Article  MATH  MathSciNet  Google Scholar 

  30. FlekkZy EG (1993) Lattice Bhatnagar–Gross–Krook models for miscible fluids. Phys Rev E 47:4247

    Article  Google Scholar 

  31. Qian YH, d’Humieres D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. Europhys Lett 17:479

    Article  MATH  Google Scholar 

  32. He X, Luo LS (1997) A priori derivation of the lattice Boltzmann equation. Phys Rev E 55:6333–6336

    Article  Google Scholar 

  33. He X, Luo LS (1997) Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E 56:6811

    Article  Google Scholar 

  34. Guo Z, Shi B, Wang N (2000) Lattice BGK model for incompressible Navier–Stokes equation. J Comput Phys 165:288–306

    Article  MATH  MathSciNet  Google Scholar 

  35. Guo Z, Zheng C, Shi B (2002) An extrapolation method for boundary conditions in lattice Boltzmann method. Phys Fluids 14:2007

    Article  Google Scholar 

  36. Kang XY, Liao Q, Zhu X, Yang YX (2010) Non-equilibrium extrapolation method in the lattice Boltzmann simulations of flows with curved boundaries (non-equilibrium extrapolation of LBM). Appl Therm Eng 30:1790–1796

    Article  Google Scholar 

  37. Yang YX, Liao Q, Zhu X, Wang H, Wu R, Lee DJ (2011) Lattice Boltzmann simulation of substrate flow past a cylinder with PSB biofilm for bio-hydrogen production. Int J Hydrogen Energy 36:14031–14040

    Article  Google Scholar 

  38. He X, Doolen G (1997) Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder. J Comput Phys 134:306–315

    Article  MATH  Google Scholar 

  39. Mei R, Yu D, Shyy W, Luo LS (2002) Force evaluation in the lattice Boltzmann method involving curved geometry. Phys Rev E 65:041203

    Article  Google Scholar 

  40. Obeid J, Magnin JP, Flaus JM, Adrot O, Willison JC, Zlatev R (2009) Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus. Int J Hydrogen Energy 34:180–185

    Article  Google Scholar 

  41. Schäfer M, Turek S (1996) Benchmark computations of laminar flow around a cylinder. In: Hirschel EH (ed) Flow simulation with high-performance computers II, Notes in numerical fluid mechanics, vol 52. Vieweg, Braunschweig, pp 547–566

    Chapter  Google Scholar 

  42. Feng ZG, Michaelides EE (2002) Interparticle forces and lift on a particle attached to a solid boundary in suspension flow. Phys Fluids 14:49–60

    Article  Google Scholar 

  43. Ladd AJC (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285–309

    Article  MATH  MathSciNet  Google Scholar 

  44. Ladd AJC (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J Fluid Mech 271:311–339

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the joint support of National Science Fund for Distinguished Young Scholars (No. 50825602), National Natural Science Foundation of China (No. 51136007, 20876183), the Fundamental Research Funds for the Central Universities (No. CDJXS 10142223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., Yang, YX., Zhu, X. et al. Lattice Boltzmann simulation on liquid flow and mass transport in a bioreactor with cylinder bundle for hydrogen production. Heat Mass Transfer 51, 859–873 (2015). https://doi.org/10.1007/s00231-014-1458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1458-2

Keywords

Navigation