Skip to main content
Log in

Effects of open-air sun drying and pre-treatment on drying characteristics of purslane (Portulaca oleracea L.)

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Effects of open-air sun drying and pre-treatment on drying characteristic of purslanes (Portulaca oleracea L.) were investigated. Drying times were determined as 31, 24 and 9 h for natural, salted and blanched, respectively. The higher “L” value and lower “−a/b” ratio values were obtained in natural dried purslane. The Aghbashlo et al. model gave a better fit to drying data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MR :

Moisture ratio (dimensionless)

M e :

Equilibrium moisture content (g water/g dry matter)

M t :

Moisture content at any time during drying (g water/g dry matter)

M o :

Initial moisture content (g water/g dry matter)

χ 2 :

Chi square

RMSE:

Root mean square error

N :

Number of observations

z :

Number of constants

MR exp :

Experimental moisture ratio

MR pre :

Predicted moisture ratio

R 2 :

Determination of coefficient

k, k 0, n, A o , a, b, c, g, k 1, k 2, h :

Constants in models

t :

Drying time (min)

a :

Greenness

b :

Yellowness

L :

Lightness

C*:

Chroma

ΔE:

Color difference

References

  1. Palaniswamy UR et al (2000) Leaf yield and fatty acid composition of purslane (Portulaca oleracea L.) at different growth stages. J Trop Agric 28:1–4

    Google Scholar 

  2. Byrne R, McAndrews JH (1975) Pre-Columbian purslane (Portulaca oleracea L.) in the New World. Nature 253:726–727

    Article  Google Scholar 

  3. Simopoulos AP, Salem N Jr (1986) Purslane: a terrestrial source of omega-3 fatty acids. New Engl J Med 315:833

    Google Scholar 

  4. Simopoulos AP (2004) Omega-3 fatty acids and antioxidants in edible wild plants. Biol Res 37:263–277

    Article  Google Scholar 

  5. Lim YY, Quah EPL (2007) Antioxidant properties of different cultivars of Portulaca oleracea. Food Chem 103:734–740

    Article  Google Scholar 

  6. Cohen JS, Yang TCS (1995) Progress in food dehydration. Trends Food Sci Technol 6:20–25

    Article  Google Scholar 

  7. Aguilera JM, Chirat A, Fito P (2003) Food dehydration and product structure. Trends Food Sci Technol 14:432–437

    Article  Google Scholar 

  8. Park KJ, Vohnikova Z, Brod FPR (2002) Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). J Food Eng 51:193–199

    Article  Google Scholar 

  9. Ozkan IA, Akbudak B, Akbudak N (2007) Microwave drying characteristics of spinach. J Food Eng 78:577–583

    Article  Google Scholar 

  10. Basunia MA, Abe T (2001) Thin-layer solar drying characteristics of rough rice under natural convection. J Food Eng 47:295–301

    Article  Google Scholar 

  11. Kostaropoulos AE, Saravacos GD (1995) Microwave pre-treatment for sun-dried raisins. J Food Sci 60:344–347

    Article  Google Scholar 

  12. Saravacos GD, Marousis SN, Raouzeos GS (1988) Effect of ethyl oleate on the rate of air-drying of foods. J Food Eng 7:263–270

    Article  Google Scholar 

  13. Adedeji AA, Gachovska TK, Ngadi MO et al (2008) Effect of pretreatments on drying characteristics of okra. Dry Technol 26:1251–1256

    Article  Google Scholar 

  14. Doymaz I (2004) Effect of pre-treatments using potassium metabisulphite and alkaline ethyl oleate on the drying kinetics of apricots. Biosyst Eng 89:281–287

    Article  Google Scholar 

  15. Tharrington ED, Kendall PA, Sofos J (2005) Inactivation of Escherichia coli O157:H7 during storage or drying of apple slices pretreated with acidic solutions. Int J Food Microbiol 99:79–89

    Article  Google Scholar 

  16. Doymaz I (2004) Pretreatment effect on sundrying of mulberry fruits (Morus alba L.). J Food Eng 65:205–209

    Article  Google Scholar 

  17. Doymaz I, Pala M (2002) Hot-air drying characteristics of red pepper. J Food Eng 55:331–335

    Article  Google Scholar 

  18. Kingsly RP, Goyal RK, Manikantan MR et al (2007) Effects of pretreatments and drying air temperature on drying behaviour of peach slice. Int J Food Eng Tech 42:65–69

    Article  Google Scholar 

  19. Abdelhaq EH, Labuza TP (1987) Air drying characteristics of apricots. J Food Sci 52:342–345

    Article  Google Scholar 

  20. Doymaz I (2007) Air-drying characteristics of tomatoes. J Food Eng 78:1291–1297

    Article  Google Scholar 

  21. Pangavhanea DR, Sawhneye RL, Sarsavadia PN (1999) Effect of various dipping pretreatment on drying kinetics of Thompson seedless grapes. J Food Eng 39:211–216

    Article  Google Scholar 

  22. Doymaz I, Pala M (2002) The effects of dipping pretreatments on air-drying rates of the seedless grapes. J Food Eng 52:413–417

    Article  Google Scholar 

  23. Doymaz I, Pala M (2003) The thin-layer drying characteristics of corn. J Food Eng 60:125–130

    Article  Google Scholar 

  24. Walde SG, Velu V, Jyothirmayi T et al (2006) Effects of pretreatments and drying methods on dehydration of mushroom. J Food Eng 74:108–115

    Article  Google Scholar 

  25. Doymaz I (2013) Hot-air drying of purslane (Portulaca oleracea L.). Heat Mass Transf 49:835–841

    Article  Google Scholar 

  26. Zanoni B, Peri C, Nani R, Lavelli V (1999) Oxidative heat damage of tomato halves as affected by drying. Food Res Int 31:395–401

    Article  Google Scholar 

  27. Porntewabancha D, Siriwongwilaichat P (2010) Effect of pre-treatments on drying characteristics and colour of dried lettuce leaves. As J Food Ag-Ind 3(06):580–586

    Google Scholar 

  28. Kashaninejad M, Tabil LG (2004) Drying characteristics of purslane (Portulaca oleracea L.). Dry Technol 22:2183–2200

    Article  Google Scholar 

  29. Midilli A, Kucuk H (2003) Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Convers Manag 4:1111–1122

    Article  Google Scholar 

  30. Aghbashlo M, Kianmehr MH, Samimi-Akhijahani H (2008) Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Convers Manage 49:2865–2871

    Article  Google Scholar 

  31. Demirhan E, Özbek B (2010) Drying kinetics and effective moisture diffusivity of purslane undergoing microwave heat treatment. Korean J Chem Eng 27:1377–1383

    Article  Google Scholar 

  32. AOAC (1984) Official methods of analysis of the association of official analytical chemists, 14th edn. AOAC, Arlington

    Google Scholar 

  33. Jarad FD, Moss BW, Youngson CC et al (2007) The effect of enamel porcelain thickness on color and the ability of a shade guide to prescribe chroma. Dental Mater 23:454–460

    Article  Google Scholar 

  34. Togrul IT, Pehlivan D (2004) Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. J Food Eng 65:413–425

    Article  Google Scholar 

  35. Kavak AE, Bicer Y, Cetinkaya F (2006) Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. J Food Eng 75:308–3015

    Article  Google Scholar 

  36. Kaleta A, Gornicki K (2010) Some remarks on evaluation of drying models of red beet particles. Energy Convers Manage 51:2967–2978

    Article  Google Scholar 

  37. Page GE (1949) Factors influencing the maximum rates of air drying shelled corn in thin layers. MSc Thesis, Department of Mechanical Engineering, Purdue University, Purdue, USA

  38. Henderson SM, Pabis S (1961) Grain drying theory I. Temperature effect on drying coefficient. J Agric Eng Res 6:169–174

    Google Scholar 

  39. Yaldız O, Ertekin C (2001) Thin layer solar drying of some different vegetables. Dry Technol 19:583–596

    Article  Google Scholar 

  40. Wang CY, Singh RP (1978) Use of variable equilibrium moisture content in modelling rice drying. Am S Agf Eng 78-6505

  41. Jena S, Das H (2007) Modeling for vacuum drying characteristics of coconut presscake. J Food Eng 79:92–99

    Article  Google Scholar 

  42. Midilli A, Kucuk H, Yapar Z (2002) A new model for single-layer drying. Dry Technol 20:1503–1513

    Article  Google Scholar 

  43. Aghbashlo M, Kianmehr M, Khani S, Ghasemi M (2009) Mathematical modeling of carrot thin-layer drying using new model. Int Agrophys 23:313–317

    Google Scholar 

  44. Alibas I (2012) Microwave drying of grapevine (Vitis vinifera L.) leaves and determination of some quality parameters. J Agric Sci 18:43–53

    Google Scholar 

  45. Kaya A, Aydın O, Demirtas C (2007) Drying kinetics of red delicious apple. Biosyst Eng 96:517–524

    Article  Google Scholar 

  46. Wang Z, Sun J, Liao X et al (2007) Mathematical modeling on hot air drying of thin layer apple pomace. Food Res Int 40:39–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysel Kantürk Figen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İsmail, O., Kantürk Figen, A. & Pişkin, S. Effects of open-air sun drying and pre-treatment on drying characteristics of purslane (Portulaca oleracea L.). Heat Mass Transfer 51, 807–813 (2015). https://doi.org/10.1007/s00231-014-1452-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1452-8

Keywords

Navigation