Skip to main content
Log in

Cavity detection in a heat conductor using linear sampling method

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, solution of inverse problems in heat conduction transient fields is investigated. For this purpose, a new time-domain version of linear sampling method (TDLSM) is developed for cavity detection in a heat conductor. The linear sampling method (LSM) is an effective approach to image the geometrical features of unknown targets. Although this method has been used in the context of inverse scattering problems such as solid, acoustics, and electromagnetism, there is no specific attempt to apply this method to identification of cavities in heat conductors. This study emphasizes the implementation of the LSM in the time-domain fields using finite element method. A set of numerical simulations on two-dimensional transient heat conduction problems is presented to highlight many effective features of the proposed TDLSM fast qualitative identification method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

‖ ‖:

Norm’s vector

*:

Convolution operator

c p :

Specific heat

d :

Number of spatial dimensions

D:

Domain of the cavity

∂D :

Boundary of the cavity

g :

Density distribution

H():

Heaviside function

k :

Thermal conductivity

L 2 :

Hilbert space

N d :

Neumann-to-Dirichlet operator

N t :

Number of time steps

N r :

Number of receivers

N S :

Number of transmitters

n :

Outward unit normal vector

\(\bar{q}(\varvec{x},t)\) :

Prescribed inflow heat flux

r :

Distance

S :

External surface

S 1 :

Excitation surface

S 2 :

Observation surface

\(SL_{{S_{1} }}\) :

Single layer heat potential operator

t :

Time(s)

\(\bar{T}(\varvec{x},t)\) :

Prescribed temperature

\(T^{D} (\varvec{x},t)\) :

Total temperature field

\(T^{S} (\varvec{x},t)\) :

Differential temperature field

\(\widehat{T}\) :

Fundamental solution of the diffusion equation

U :

Left-singular vectors

\({v}(\varvec{x},t)\) :

Superposition temperature

V :

Right-singular vectors

\(w^{{S}} (\varvec{x},t)\) :

Superposition of differential temperature field

\(\varvec{x} = \left[ {x_{1} ,x_{2} } \right]^{T}\) :

Cartesian coordinates

z :

Sampling point

\(\phi_{\varvec{z}} (\varvec{x},t)\) :

Radiated temperature vector

ρ :

Mass density

Ω:

Homogeneous media

∇.(∇):

Laplace operator

δ :

Dirac delta function

\(\mathcal{L}\) :

Partial differential operator

τ :

Time

λ :

Tikhonov regularization parameter

ε :

Error

σ :

Singular value

D :

Dirichlet boundary condition

N :

Neumann boundary condition

n, m :

Time index

i, j :

Spatial index

FEM:

Finite element method

LSM:

Linear sampling method

MFS:

Method of fundamental solution

SVD:

Singular value decomposition

TDLSM:

Time domain linear sampling method

References

  1. Tanaka M, Masuda Y (1986) Boundary element method applied to some inverse problems. Eng Anal 3(3):138–143

    Article  Google Scholar 

  2. Le Niliot C, Lefevre F (2001) A method for multiple steady line heat sources identification in a diffusive system: application to an experimental 2D problem. Int J Heat Mass Transfer 44:1425–1438

    Article  MATH  Google Scholar 

  3. Niliot CL, Lefevre F (2004) A parameter estimation approach to solve the inverse problem of point heat sources identification. Int J Heat Mass Transfer 47(4):827–841

    Article  MATH  Google Scholar 

  4. Karami G, Hematiyan MR (2000) A boundary element method of inverse non-linear heat conduction analysis with point and line heat sources. Commun Numer Methods Eng 16:191–203

    Article  MATH  Google Scholar 

  5. Huang CH, Ozisik MN (1992) Inverse problem of determining the unknown strength of an internal plane heat source. J Franklin Instit 329:751–764

    Article  MATH  Google Scholar 

  6. Neto AJS, Ozisik MN (1993) Simultaneous estimation of location and timewise varying strength of a plane heat source. Numer Heat Transfer Appl 24:467–477

    Article  Google Scholar 

  7. Neto AJS, Ozisik MN (1992) Two-dimensional inverse heat conduction problem of estimating the time-varying strength of a line heat source. J Appl Phys 71:5357–5362

    Article  Google Scholar 

  8. Wang SK, Lee HL, Yang YC (2009) Inverse problem of estimating time-dependent heat generation in a frictional heated strip and foundation. Int Commun Heat Mass Transfer 36(9):925–930

    Article  MathSciNet  Google Scholar 

  9. Kołodziej JA, Mierzwiczak M, Ciałkowski M (2010) Application of the method of fundamental solutions and radial basis functions for inverse heat source problem in case of steady-state. Int Commun Heat Mass Transfer 37(2):121–124

    Google Scholar 

  10. Johansson BT, Lesnic D, Reeve T (2012) A method of fundamental solutions for the radially symmetric inverse heat conduction problem. Int Commun Heat Mass Transfer 39(7):887–895

    Article  Google Scholar 

  11. Jin LMB (2007) The method of fundamental solutions for inverse source problems associated with the steady-state heat conduction. Int J Numer Methods Eng 69:1570–1589

    Article  MATH  Google Scholar 

  12. Bakushinsky AB, Kokurin MY (2005) Iterative methods for approximate solution of inverse problems, 1st edn. Springer, Berlin

    Google Scholar 

  13. Colton D, Kress R (1998) Inverse acoustic and electromagnetic scattering theory, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Bleistein N (1984) Mathematical methods for wave phenomena, 1st edn. Academic Press, New York

    MATH  Google Scholar 

  15. Zapalowski L, Fiddy MA, Leeman S (1984) On inverse scattering in the first Born approximation. In IEEE 1984 ultrasonics symposium, Dallas, Texas, USA, pp 827–830

  16. Cakoni F, Colton D (2006) Qualitative methods in inverse scattering theory. Springer, Berlin

    MATH  Google Scholar 

  17. Cakoni F, Colton D, Monk P (2011) The linear sampling method in inverse electromagnetic scattering. SIAM, Philadelphia

  18. Colton D, Coyle J, Monk P (2000) Recent developments in inverse acoustic scattering theory. SIAM Rev 42(3):369–414

    Article  MATH  MathSciNet  Google Scholar 

  19. Bonnet M, Guzina BB (2004) Sounding of finite solid bodies by way of topological derivative. Int J Numer Methods Eng 61(13):2344–2373

    Article  MATH  MathSciNet  Google Scholar 

  20. Guzina BB, Bonnet M (2004) Topological derivative for the inverse scattering of elastic waves. Q J Mech Appl Math 57(2):161–179

    MATH  MathSciNet  Google Scholar 

  21. Kirsch A (2002) The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Probl 18(4):1025–1040

    Article  MATH  MathSciNet  Google Scholar 

  22. Potthast R (2006) A survey on sampling and probe methods for inverse problems. Inverse Probl 22(2):1–47

    MathSciNet  Google Scholar 

  23. Potthast R (2001) Point sources and multipoles in inverse scattering theory, 1st edn. Taylor & Francis Group, NewYork

    Book  MATH  Google Scholar 

  24. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  25. Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New York

    MATH  Google Scholar 

  26. Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth and Heinmann, Oxford, UK

    MATH  Google Scholar 

  27. Hadamard J (1923) Lectures on the Cauchy problem in linear partial differential equations. Yale University Press, New Haven

    Google Scholar 

  28. Kirsch A (2011) An introduction to the mathematical theory of inverse problems. Springer, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Khaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghan Manshadi, S.H., Khaji, N. Cavity detection in a heat conductor using linear sampling method. Heat Mass Transfer 50, 973–984 (2014). https://doi.org/10.1007/s00231-014-1309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1309-1

Keywords

Navigation