Skip to main content
Log in

Influence of turbulence model parameter settings on conjugate heat transfer simulation

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Rationality of the parameter settings in turbulence model is an important factor affecting the accuracy of conjugate heat transfer (CHT) prediction. On the basis of a developed CHT methodology and the experimental data of Mark// cooling turbine blade, influences of the turbulence model parameter settings and the selection of turbulence models on CHT simulation are investigated. Results and comparisons with experimental data indicate that the inlet setting of the \(\tilde{v}\) in Spalart–Allmaras model has nearly no influence on flow and heat transfer in blade surface. The inlet turbulence length scale l T in the low-Reynolds number Chien k-ε turbulence model and the blade surface roughness in shear stress transport (SST) k-ω SST model have relatively obvious effects on the blade surface temperature which increases with the increase of them. Both of the laminar Prandtl number and turbulent Prandtl number have slight influences on the prediction, and they only need to be constant in CHT simulation. The k-ω SST model has the best accuracy in the turbine blade CHT simulation compared with the other two models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

C f :

Friction coefficient

C v :

Defined as C v  = μ T,inf /μ L,inf

d 1 :

Represents the distance from first mesh layer to the wall

k :

Turbulent kinetic energy

l T :

Turbulence length scale

Lt :

Turbulence length scale

L :

Axial chord length of airfoil

mut/mul :

Ratio of turbulent and laminar viscosity coefficient

Nr :

Represents the roughness coefficient

PS :

Static pressure at blade surface

PT :

Mainstream inlet total pressure

Pr T :

Turbulent Prandtl number

Pr L :

Laminar Prandtl number

P.S.:

Pressure surface

S.S. :

Suction surface

T u :

Turbulence intensity

Tw :

Temperature at blade surface

tke :

Turbulent kinetic energy

U abs :

Absolute velocity

X :

Cartesian coordinates

y + :

Dimensionless distance from wall

\(\tilde{v}\) :

Working available in SA model and obeys the transport equation

μ T,inf :

Turbulent viscosity coefficient of inlet flow

μ L,inf :

Laminar viscosity coefficient of inlet flow

μ L :

Laminar viscosity coefficient

μ T :

Turbulent viscosity coefficient

ω :

Specific turbulent dissipation rate

ρ :

Density

β 1 :

Coefficient in Eq. (1)

γ :

Intermittency factor

abs:

Absolute

inf:

Inlet flow

L:

Laminar

r:

Roughness

T or t:

Turbulent

w:

Wall

References

  1. AIAA (1991) The integrated high performance turbine engine technology (IHPTET) initiative. AIAA Position Paper

  2. Han JC, Duffa S, Ekkad SV (2000) Gas turbine heat transfer and cooling technology. Taylor and Francis, New York

    Google Scholar 

  3. Bohn D, Krüger U, Kusterer K (2002) Conjugate heat transfer: an advance computational method for the cooling design of modern gas turbine blades and vanes. In: Sunden B, Faghrim (eds) Heat transfer in gas turbine. WIT Press, Southampton

    Google Scholar 

  4. Heidmann JD, Kassab AJ, Divo EA et al (2003) Conjugate heat transfer effects on a realistic film-cooled turbine vane. ASME Turbo Expo GT2003-38553

  5. Kassab AJ, Divo EA, Heidmann JD et al (2003) BEM/FVM conjugate heat transfer analysis of a three-dimensional film cooled turbine blade. Int J Numer Methods Heat Luid Flow 13(5):581–610

    Article  MATH  Google Scholar 

  6. Montomoli F, Adami P, Della Gatta S,Martelli F (2004) Conjugate heat transfer modeling in film cooled blades. ASME Turbo Expo GT2004-53177

  7. York WD, Leylek JH (2003) Three-Dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane. ASME Turbo Expo GT2003-38551

  8. Silieti M, Kassab AJ, Divo E (2005) Film cooling effectiveness from a single scaled-up fan-shaped hole: a CFD simulation of adiabatic and conjugate heat transfer models. ASME Turbo Expo GT2005-68431

  9. Iaccarino G, Ooi A, Derbin PA, Behnia M (2002) Conjugate heat transfer predictions in two-dimensional ribbed passages. Int J Heat and Fluid Flow 23:340–345

    Article  Google Scholar 

  10. Luo Jiang, Razinsky EH (2007) Conjugate heat transfer analysis of a cooled turbine vane using the V2F turbulence model. J Turbomachineary 129(4):733–781

    Google Scholar 

  11. Montomoli F, Adami P, Della S, Martelli F (2004) Conjugate heat transfer modeling in film cooled blades. ASME Turbo Expo GT2004-53177

  12. Jatin Gupta (2009) Application of conjugate heat transfer (CHT) methodology for computation of heat transfer on a turbine blade. Dissertation, The Ohio State University

  13. Li Yu, Zou Zhengping (2010) A 3-D preconditioning conjugate heat transfer solver and validation. Proceedings of the 3rd International Symposium Jet Propulsion and Power Engineering, Nanjing

  14. Wang Peng, Li Yu, Zou Zhengping, Wang Lei, Song Songhe (2012) Improvement of a turbulence model for conjugate heat transfer simulation. Numer Heat Transf Part A 62:624–638

    Article  Google Scholar 

  15. Wang Peng, Li Yu, Zou Zhengping, Zhang Weihao (2013) Conjugate heat transfer investigation of cooled turbine using the preconditioned density-based algorithm. Propuls Power Res 2(1):56–59

    Article  Google Scholar 

  16. Hylton LD, Mihelc MS, Turner M, Nealy DA, York R (1983) Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes. NASA Technical Report CR 168015

  17. Nealy DA, Mihelc MS, Hylton LD, Gladden HJ (1983) Measurements of Heat Transfer Distribution Over the Surfaces of Highly Loaded Turbine Nozzle Guide Vanes. ASME Turbo Expo GT83-53

  18. Hall EJ, Topp DA, Delaney RD (1994) Aerodynamic/heat transfer analysis of discrete site film-cooled airfoils. AIAA Paper 94-3070

  19. Kao KH, Liou MS (1996) On the application of chimera/unstructured hybird grids for conjugate heat transfer. ASME Turbo Expo GT96-156

  20. Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439

  21. Blazek J (2001) Computational fluid dynamics principles and applications. Elsevier Science Ltd, Oxford

    MATH  Google Scholar 

  22. Numeca Ltd (2001) Numeca’s user manual-fineTM version 7.0. Numeca International, Belgium

  23. Shiming Yang, Wenquan Tao (1998) Heat transfer. Higher Education Press, Beijing

    Google Scholar 

  24. Hishida M, Nagano Y, Tagawa M (1986) Transport processes of heat and momentum in the wall region. Proceedings of Eighth International Heat Transfer Conference 3: 925–930

  25. Kays WM, Crawford ME (1993) Convective heat and mass transfer, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  26. Yakhot V, Orszag SA, Thangam S et al (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids 4(7):1510–1520

    Article  MATH  MathSciNet  Google Scholar 

  27. Yoder DA, Georgiadis NJ (1999) Implementation and validation of the Chien k-ε turbulence model in the wind Navier-Stokes code. NASA TM-209080

  28. Blair MF et al (1989) The effect of turbulence and stator/rotor interactions on turbine heat transfer: part 1-design operating conditions. J Turbomachinery 111:87–96

    Article  Google Scholar 

  29. Halstead DE, Wisler DC, Okiishi TH et al (1995) Boundary layer development in axial compressors and turbines. ASME Turbo Expo GT95-461

  30. Kunz RF, Lakshminarayana B (1992) Explicit Navier-Stokes computation of cascade flows using the k-ε turbulence model. AIAA J 30:13–22

    Article  MATH  Google Scholar 

  31. Richardson LF (1922) Weather prediction by numerical process. Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

  32. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605

    Article  Google Scholar 

  33. Menter FR, Rumsey LC (1994) Assessment of two-equation turbulence models for transonic flows. AIAA Paper 94-2343

Download references

Acknowledgments

The work is financially supported by National Nature Science Foundation of China under Grant Numbers 91130013 and Innovation Foundation of BUAA for PhD Graduates (YWF-13-A01-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Li, Y., Zou, Z. et al. Influence of turbulence model parameter settings on conjugate heat transfer simulation. Heat Mass Transfer 50, 521–532 (2014). https://doi.org/10.1007/s00231-013-1253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1253-5

Keywords

Navigation