Skip to main content
Log in

Molecular dynamics simulation of Poiseuille flow in a rough nano channel with checker surface roughnesses geometry

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Molecular dynamics simulation is applied to investigate the effects of checker surface roughness geometry on the flow of liquid argon through nanochannels that the roughness is implemented on the lower channel wall. The Lennard-Jones potential is used to model the interactions between particles and periodic boundary condition is applied in the flow direction. Density and velocity profiles across the channel are investigated for channel that the lower surface is decorated with the checker surface roughness elements. Result show that as the surface attraction energy or the roughness height increase the density layering in the near the wall is enhanced by higher values or secondary layering phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AR = h/L :

Roughness Aspect Ratio

\(\overrightarrow {F}_{ext}\) :

External force (N)

h:

Roughness height

H:

Channel height

k B :

Boltzmann Constant JK−1

m :

Mass of molecule (Kg)

N(z):

Number of particles at height z

N atm :

Number of atoms

N bin :

Number of bins

r :

Position vector (m)

r ij :

Inter-particle separation (m)

T :

Temperature (K)

T wall :

Wall temperature

v :

Velocity vector (ms−1)

z :

Height (m)

\(\vec{\nabla }\) :

Dell Gradient

σ:

Length parameter for Argon (m)

σs :

Length parameter for solid (m)

ρ :

Density kgm−3

ε :

Energy parameter (J)

ε s :

Energy parameter for solid (J)

ϕ :

Potential function (J)

ϕ w :

Wall potential function (J)

δ t :

Time step (sec)

c:

Cut off

i:

ith

w:

wall

x:

x-direction

y:

y-direction

z:

z-direction

References

  1. Pit R, Hervet H, Leger L (2000) Direct experimental evidence of slip in hexadecane: solid interfaces. Phys Rev Lett 85:980–983

    Article  Google Scholar 

  2. Zhu Y, Granick S (2001) Rate-dependent slip of Newtonian liquid at smooth surface. Phys Rev Lett 87:096105–096110

    Article  Google Scholar 

  3. Craig VSJ, Neto C, Williams DRM (2001) Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys Rev Lett 87:054504–054510

    Article  Google Scholar 

  4. Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic micro channel walls. Phys Fluids 14:9–12

    Article  Google Scholar 

  5. Bonaccurso E, Kappl M, Butt HJ (2002) Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electro kinetic effects. Phys Rev Lett 88:076103–076110

    Article  Google Scholar 

  6. Cottin-Bizonne C, Charlaix E, Bocquet L, Barrat JL (2003) Low-friction flows of liquid at nano-patterned interfaces. Nat Mater 2:237–240

    Article  Google Scholar 

  7. Choi CH, Johan K, Westin A, Breuer KS (2003) Apparent slip flows in hydrophilic and hydrophobic micro channels. Phys Fluids 15:2897–2902

    Article  Google Scholar 

  8. Ou J, Perot B, Rothstein JP (2004) Laminar drag reduction in micro channels using ultra hydrophobic surfaces. Phys Fluids 16:4635–4643

    Article  Google Scholar 

  9. Mo G, Rosenberger F (1990) Molecular-dynamics simulation of flow in a 2 dimensional channel with atomically rough walls. Phys Rev A 42:4688–4698

    Article  Google Scholar 

  10. Priezjev NV (2007) Effect of surface roughness on rate-dependent slip in simple fluids. J Chem Phys 127:144708–1447014

    Article  Google Scholar 

  11. Gala TM, Attard F (2004) Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow. Langmuir 20:3477–3482

    Article  Google Scholar 

  12. Cao BY, Chen M, Guo ZY (2006) Effect of surface roughness on gas flow studied by molecular dynamics simulation. Phys Rev 74:066311

    Google Scholar 

  13. Ziarani AS, Mohammad AA (2006) Development of qualitative rules for simulation disturbances and actions in a Modeling and simulation of double-pass sheet-and-tube solar water heaters, 17th International Conference. Modeling and Simulation, Canada, pp 585–590

    Google Scholar 

  14. Jabbarzadeh A, Atkinson JD (2000) Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of coquette shear flow between two sinusoidal walls. Phys Rev E 61:690–699

    Article  Google Scholar 

  15. Kim D, Darve E (2006) Molecular dynamics simulation of electro-osmotic flows in rough wall nano channels. Phys Rev 73:051203

    Google Scholar 

  16. Chang HC, Maginn EJ (2003) Molecular simulations of knudsen wall-slip: effect of wall morphology. Mol Simul 29:697–709

    Article  MATH  Google Scholar 

  17. Kunert C, Harting J (2008) Simulation of fluid flow in hydrophobic rough micro channels. Int J Comut Fluid Dyn 22:475–480

    Article  MATH  Google Scholar 

  18. Ziarani AS, Mohamad AA (2008) Effect of wall roughness on the slip of fluid in a micro channel. Nanoscale Microscale Thermophys Eng 12:154–169

    Article  Google Scholar 

  19. Sofos FD, Karakasidis TE (2009) Effects of wall roughness on flow in nano channels. Phys Rev E 97:026305

    Article  Google Scholar 

  20. Nikolaos A, Dimitris D (2010) Surface roughness effects in micro and nano fluidic devices. J Comput Theor Nano Sci 7:1825–1830

    Article  Google Scholar 

  21. Kamali R, Kharazmi A (2011) Molecular dynamics simulation of surface roughness effects on nano scale flows. Int J Therm Sci 50:226–232

    Article  Google Scholar 

  22. Li Y, Xu J, Li D (2010) Molecular dynamics simulation of nanoscale liquid flows. Microfluid Nanofluid 9:1011–1031

    Article  Google Scholar 

  23. Reza K, Ali H (2011) Molecular dynamics simulation of surface roughness effects on nanoscale flows. Int J Therm Sci 50:226–232

    Article  Google Scholar 

  24. Chen Y, Zhang C, Shi M, Peterson GP (2012) Slip boundary for fluid flow at rough solid surfaces. Appl Phys Lett 100:074102–074110

    Article  Google Scholar 

  25. Travis KP, Gubbins KE (2000) Poiseuille flow of Lennard-Jones fluidsin narrow slit pores. J Chem Phys 112:19841994

    Article  Google Scholar 

  26. Ghosh A, Paredes R, Lundg S (2007) Poiseuille flow in nanochannel, use of different thermostats, PARTEC Conference

  27. Stoddrd SD, Ford PJ (1973) Numerical experiments on the stochastic behavior of a Lennard–Jones gas system. Phys Rev A 8(8):1504–1510

    Article  Google Scholar 

  28. Asproulis N, Drikakis D (2010) Surface roughness effects in micro and nano fluidic devices. J Comput Theor Nanosci 7:1825–1830

    Article  Google Scholar 

  29. Toghraie Semiromi D, Azimian AR (2010) Molecular dynamics simulation of liquid–vapor phase equilibrium by using the modified Lennard-Jones potential function. Heat Mass Transfer 46: 287–294

    Google Scholar 

  30. Toghraie Semiromi D, Azimian AR (2010) Nanoscale Poiseuille flow and effects of modified Lennard–Jones potential function. Heat Mass Transfer 46: 791–801

    Google Scholar 

  31. Toghraie Semiromi D, Azimian AR (2011) Molecular dynamics simulation of nonodroplets with the modified Lennard-Jones potential function. Heat Mass Transf 47:579–588

    Article  Google Scholar 

  32. Toghraie Semiromi D, Azimian AR (2012) Molecular dynamics simulation of annular flow boiling with the modified Lennard-Jones potential function. Heat Mass Transfer 48:141–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Toghraie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noorian, H., Toghraie, D. & Azimian, A.R. Molecular dynamics simulation of Poiseuille flow in a rough nano channel with checker surface roughnesses geometry. Heat Mass Transfer 50, 105–113 (2014). https://doi.org/10.1007/s00231-013-1232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1232-x

Keywords

Navigation