Skip to main content
Log in

Temperature distributions in a periodically stratified layer with slant lamination

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The paper deals with the two-dimensional stationary temperature distribution in a composite layer. The nonhomogenous body is assumed to be composed of periodically repeated two-layered laminae. The layering is inclined with an arbitrary angle to the boundary planes. The lower and upper boundary planes are assumed to be kept at given temperatures. The considered problem is solved within the framework of the homogenized model with microlocal parameters, where the continuity thermal conditions on interfaces are satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

(x, y):

Cartesian coordinates connected with the layering (m)

\((\tilde{x},\tilde{y})\) :

Cartesian coordinates connected with the boundary (m)

T(x, y):

Temperature at point (x, y) (K)

h(x):

Shape function

\(h^{\prime } (x)\) :

Derivative of shape function

q(x, y):

Microlocal parameter

q (i) :

Heat flux vector in a layer of the ith kind, i = 1, 2 (W)

q (i) x , q (i) y :

Components of heat flux vector (W)

\(h^{*}\) :

Dimensionless thickness of layer

\((\tilde{x}^{*} ,\,\tilde{y}^{*} )\) :

Dimensionless variables \((\tilde{x},\,\tilde{y})\) determined in Eq. (4.5)

K 1, K 2 :

Coefficients of thermal conductivity of the subsequent component of the body (Wm−1 K−1)

a :

The half of length of heated range (m)

\(\tilde{K},K^{ * }\) :

Effective thermal modulus on the homogenized model with microlocal parameters (Wm−1 K−1)

α:

Angle of inclination of layering to axis \(\tilde{x}\) (rad)

δ 1, δ 2 :

Thickness of the layers being the constituents of composite (m)

δ = δ 1 + δ 2 :

Thickness of fundamental unit (m)

η = δ 1/δ :

Saturation coefficient of fundamental unit by the first kind of material (–)

θ :

Macro-temperature in homogenized model with microlocal parameters (K)

γ :

Parameter of Fourier transform

ω :

Constant determined in Eq. (3.7)

β :

Constant determined in Eq. (3.11)

ϑ 0 :

Intensity of boundary temperature for \(\left| {\tilde{x}} \right| \le a\)

\(\bar{\vartheta }\) :

Fourier transform of the boundary temperature

\(\hat{\gamma }\) :

Variable determined in Eq. (4.7)

i = 1, 2:

Kind of sublayer, i = 1 the first kind or i = 2 the second kind of the subsequent layers

References

  1. Aurialt JL (1983) Effective macroscopic description for heat conduction in periodic composites. Int J Heat Mass Transf 26:861–869

    Article  Google Scholar 

  2. Backhalov NS, Panasenko GP (1984) Averaged processes in periodic media. Science, Moscow

    Google Scholar 

  3. Bedford A, Stern M (1971) Toward diffusing continuum theory of composite materials. J Appl Mech 38:8–14

    Article  Google Scholar 

  4. Bufler H (2000) Stationary heat conduction in a macro- and microperiodically layered solid. Arch Appl Mech 70:103–114

    Article  MATH  Google Scholar 

  5. Furmański P (1997) Heat conduction in composites: homogenization and macroscopic behavior. Appl Mech Rev 50:327–356

    Article  Google Scholar 

  6. Ignaczak J, Baczyński ZF (1997) On a refined heat-conduction theory of microperiodic layered solids. J Therm Stress 20:749–771

    Article  Google Scholar 

  7. Negi JG, Singh RN (1969) A matrix method for heat conduction in multi-layered media. Pure Appl Geophys PAGEOPH 73(1):143–151

    Article  Google Scholar 

  8. Kaczyński A, Matysiak SJ (2003) On the three-dimensional problem of an interface crack under uniform heat flow in a bimaterial periodically-layered space. Int J Fract 123:127–138

    Article  Google Scholar 

  9. Kulchytsky-Zhyhailo R, Matysiak SJ (2006) On temperature distributions in a semi-infinite periodically stratified layer. Bull Pol Acad Sci Tech Sci 54:45–49

    MATH  Google Scholar 

  10. Kulchytsky-Zhyhailo R, Matysiak SJ (2005) On heat conduction problem in a semi-infinite periodically laminated layer. Int Commun Heat Mass Transf 32:123–132

    Article  Google Scholar 

  11. Kulchytsky-Zhyhailo R, Matysiak SJ, Perkowski DM (2007) On displacements and stresses in a semi-infinite laminated layer: comparative results. Meccanica 42:117–126

    Article  MATH  Google Scholar 

  12. Maewal A (1979) Homogenization for transient heat conduction. ASME J Appl Mech 46:945–946

    Article  MATH  Google Scholar 

  13. Manevith LI, Adrianov IV, Osmyan VG (2002) Mechanics of periodically layered heterogenous structures. Springer, Berlin

    Book  Google Scholar 

  14. Matysiak SJ (1989) Thermal stresses in a periodic two-layered composites weakened by an interface crack. Acta Mech 78:95–108

    Article  MATH  MathSciNet  Google Scholar 

  15. Matysiak SJ, Yevtushenko AA, Kuciej M (2007) Temperature field in the process of braking of a massive body with composite coating. Mater Sci 43:62–69

    Article  Google Scholar 

  16. Matysiak SJ, Perkowski DM (2010) On heat conduction in a semi-infinite laminated layer. Comparative results for two approaches. Int Commun Heat Mass Transf 37:343–349

    Article  Google Scholar 

  17. Matysiak SJ, Woźniak Cz (1986) On the modelling of heat conduction problem in laminated bodies. Acta Mech 65:223–238

    Article  Google Scholar 

  18. Matysiak SJ, Woźniak Cz (1988) On the microlocal modelling of thermoelastic periodic composites. J Tech Phys 29:85–97

    MATH  MathSciNet  Google Scholar 

  19. Matysiak SJ, Yevtushenko AA, Ivanyk E (1998) Temperature field in a microperiodic two-layered composite caused by a circular laser heat source. Heat Mass Transf 34:127–133

    Article  Google Scholar 

  20. Perkowski D, Matysiak SJ, Kulchytsky-Zhyhailo R (2007) On contact problem of an elastic laminated semi-space with a boundary normal to layering. Compos Sci Technol 67:2683–2690

    Article  Google Scholar 

  21. Woźniak C (1986) Nonstandard analysis in mechanics. Adv Mech 9:3–35

    Google Scholar 

  22. Woźniak Cz (1987) A nonstandard method of modelling of thermoelastic periodic composites. Int J Eng Sci 25:483–499

    Article  MATH  Google Scholar 

  23. Woźniak C, Wierzbicki E (2000) Averaging techniques in thermomechanics of composite solids. Tolerance averaging versus homogenization. Wydawnictwo Politechniki Częstochowskiej, Częstochowa

    MATH  Google Scholar 

  24. Yevtushenko AA, Matysiak SJ, Ivanyk E (1997) Influence of periodically layered material structure on the frictional temperature during braking. Int J Heat Mass Transf 40:2115–2122

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław J. Matysiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matysiak, S.J., Perkowski, D.M. Temperature distributions in a periodically stratified layer with slant lamination. Heat Mass Transfer 50, 75–83 (2014). https://doi.org/10.1007/s00231-013-1225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1225-9

Keywords

Navigation