Skip to main content
Log in

A fin design employing an inverse approach using simplex search method

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper is aimed at estimating unknown parameters in a rectangular fin satisfying a predefined temperature. The differential transformation along with simplex method is used. The study has been done for different initial guess, random errors and measurement points. It is observed that, there is unique value of the convection-conduction parameter, but different conductivity and radiative parameters exist which will be useful in adjusting the parameters amongst various alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A c :

Cross sectional area of the fin (m2)

a :

Integral constant representing the fin tip temperature

b :

Length of the fin (m)

C :

Variable thermal conductivity parameter (=λT b )

C e :

Estimated value of C calculated from the inverse method

R :

Radiative parameter \(\left( { = \frac{{\varepsilon \sigma T_{b}^{3} Pb^{2} }}{{k_{a} A_{c} }}} \right)\)

R e :

Estimated value of R calculated from the inverse method

e :

Error in calculating the integral constant

e r :

Random measurement error

F :

Objective function

h :

Convective heat transfer coefficient (W/m2 K)

k :

Thermal conductivity (W/m K)

N :

Convection-conduction parameter \(\left( { = \sqrt {\frac{{hPb^{2} }}{{k_{a} A_{c} }}} } \right)\)

n :

Set containing the unknowns to be estimated in the inverse method

P :

Perimeter of the fin (m)

Q :

Heat transfer rate (W)

T :

Temperature (K)

t :

Thickness of the fin (m)

w :

Width of the fin (m)

X :

Non-dimensional location along the fin length (=x/b)

x :

Distance measured from the fin surface (m)

a :

Ambient condition

b :

Fin base

e :

Estimated values

~:

Exact value

\(\chi\) :

Expansion coefficient

ε :

Surface emissivity

\(\gamma\) :

Contraction coefficient

η :

Fin efficiency \(\left( { = \frac{Q}{{Q_{ideal} }}} \right)\)

λ :

Variable thermal conductivity coefficient (K−1)

θ :

Non-dimensional temperature \(\left( { = \frac{T}{{T_{b} }}} \right)\)

\(\rho\) :

Reflection coefficient

σ :

Stefan–Boltzmann constant (=5.67 × 10−8 W/m2 K4)

\(\tau\) :

Shrinkage coefficient

References

  1. Incropera F, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  2. Kraus AD, Aziz A, Welty JR (2001) Extended surface heat transfer. Wiley, New York

    Google Scholar 

  3. Incropera FP, DeWitt DP (1985) Introduction to heat transfer. Wiley, New York

    Google Scholar 

  4. Ma SW, Behbahani AI, Tsuei YG (1991) Two-dimensional rectangular fin with variable heat transfer coefficient. Int J Heat Mass Transf 34:79–85

    Article  Google Scholar 

  5. Baskaya S, Sivrioglu M, Ozek M (2000) Parametric study of natural convection heat transfer from horizontal rectangular fin arrays. Int J Therm Sci 39:797–805

    Article  Google Scholar 

  6. Chiu CH, Chen CK (2002) A decomposition method for solving the convective longitudinal fins with variable thermal conductivity. Int J Heat Mass Transfer 45:2067–2075

    Article  MATH  Google Scholar 

  7. Arslanturk C (2005) A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Int Commun Heat Mass Transfer 32:831–841

    Article  Google Scholar 

  8. Coskun SB, Atay MT (2008) Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method. Appl Therm Eng 28:2345–2352

    Article  Google Scholar 

  9. Domairry G, Fazeli M (2009) Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Commun Nonlinear Sci Numer Simu 14:489–499

    Article  Google Scholar 

  10. Joneidi AA, Ganji DD, Babaelahi M (2009) Differential transformation method to determine the fin efficiency of convective straight fins with temperature dependent thermal conductivity. Int Commun Heat Mass Transfer 36:757–762

    Article  Google Scholar 

  11. Ganji DD, Rahgoshay M, Rahimi M, Jafari M (2010) Numerical investigation of fin efficiency and temperature distribution of conductive, convective, and radiative straight fins. Int J Res Rev Appl Sci 4(3):9–16

    Google Scholar 

  12. Ganji DD, Rahimi M, Rahgoshay M, Jafari M (2011) Analytical and numerical investigation of fin efficiency and temperature distribution of conductive, convective, and radiative straight fins. Heat Transfer Asian Res 40:233–245

    Article  Google Scholar 

  13. Chen UC, Chang WJ, Hsu JC (2001) Two-dimensional inverse problem in estimating heat flux of pin fins. Int Commun Heat Mass Transfer 28:793–801

    Article  MATH  Google Scholar 

  14. Chen WL, Yang YC, Lee HL (2007) Inverse problem in determining convection heat transfer coefficient of an annular fin. Energy Convers Manage 48:1081–1088

    Article  Google Scholar 

  15. Chen HT, Hsu WL (2007) Estimation of heat transfer coefficient on the fin of annular finned-tube heat exchangers in natural convection for various fin spacings. Int J Heat Mass Transfer 50:1750–1761

    Article  MATH  Google Scholar 

  16. Chen HT, Wang HC (2008) Estimation of heat-transfer characteristics on a fin under wet conditions. Int J Heat Mass Transfer 51:2123–2138

    Article  MATH  Google Scholar 

  17. Peng H, Ling X, Wu E (2010) An improved particle swarm algorithm for optimal design of plate-fin heat exchangers. Ind Eng Chem Res 49:6144–6149

    Article  Google Scholar 

  18. Das R (2011) Estimation of radius ratio in a fin using inverse CFD model. CFD Lett 3:40–47

    Google Scholar 

  19. Das R (2012) Application of genetic algorithm for unknown parameter estimations in cylindrical fin. Appl Soft Comput J 12:3369–3378

    Article  Google Scholar 

  20. Das R, Dutta PP (2012) Application of simulated annealing for simultaneous estimation of parameters in a cylindrical fin. Numer Heat Transfer Part A 61:699–716

    Article  Google Scholar 

  21. Das R (2011) A simplex search method for a conductive–convective fin with variable conductivity. Int J Heat Mass Transfer 54:5001–5009

    Article  MATH  Google Scholar 

  22. Liu FB (2011) A hybrid method for the inverse heat transfer of estimating fluid thermal conductivity and heat capacity. Int J Thermal Sci 50:718–724

    Article  Google Scholar 

  23. Liu FB (2012) Inverse estimation of wall heat flux by using particle swarm algorithm with Gaussian mutation. Int J Thermal Sci 54:62–69

    Article  Google Scholar 

  24. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 4:308–313

    Article  Google Scholar 

  25. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of Nelder-Mead simplex method in low dimensions. SIAM J Optim 9:112–147

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, R., Mallick, A. & Ooi, K.T. A fin design employing an inverse approach using simplex search method. Heat Mass Transfer 49, 1029–1038 (2013). https://doi.org/10.1007/s00231-013-1146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1146-7

Keywords

Navigation