Skip to main content
Log in

Hot-air drying of purslane (Portulaca oleracea L.)

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Drying characteristics of purslane was experimentally studied in a cabinet dryer. The experimental drying data were fitted best to Modified Henderson and Pabis and Midilli et al. models apart from other models to predict the drying kinetics. The effective moisture diffusivity varied from 1.12 × 10−9 to 3.60 × 10−9 m2/s over the temperature range studied and activation energy was 53.65 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu L, Howe P, Zhou YF, Xu ZQ, Hocart C, Zhang R (2007) Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. J Chromatogr A 893:207–213

    Google Scholar 

  2. Fontana E, Hoeberechts J, Nicola S, Cros V, Palmegiano GB, Peiretti PG (2006) Nitrogen concentration and nitrate/ammonium ratio affect yield and change the oxalic acid concentration and fatty acid profile of purslane (Portulace oleracea L.) grown in a soilless culture systems. J Sci Food Agric 86:2417–2424

    Article  Google Scholar 

  3. Akpinar EK (2006) Mathematical modelling of thin layer drying process under open sun of some aromatic plants. J Food Eng 77:864–870

    Article  Google Scholar 

  4. Zielinska M, Markowski M (2010) Air drying characteristics and moisture diffusivity of carrots. Chem Eng Process 49:212–218

    Article  Google Scholar 

  5. Diamante LM, Ihns R, Savage GP, Vanhanen L (2010) A new mathematical model for thin layer drying fruits. Int J Food Sci Technol 45:1956–1962

    Article  Google Scholar 

  6. McMinn WAW (2006) Thin-layer modeling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J Food Eng 72:113–123

    Article  Google Scholar 

  7. Lee G, Hsieh H (2008) Thin-layer drying kinetics of strawberry fruit leather. Trans ASABE 51:1699–1705

    Google Scholar 

  8. Madhiyanon T, Phila A, Soponronnarit S (2009) Models of fluidized bed drying for thin-layer chopped coconut. Appl Therm Eng 29:2849–2854

    Article  Google Scholar 

  9. Falade KO, Solademi OJ (2010) Modeling of air drying of fresh and blanched sweet potato slices. Int J Food Sci Technol 45:278–288

    Article  Google Scholar 

  10. Rayaguru K, Routray W, Mohanty SN (2011) Mathematical modelling and quality parameters of air-dried betel leaf (Piper betle L.). J Food Process Pres 35:394–401

    Article  Google Scholar 

  11. Kashaninejad M, Tabil LG (2004) Dying Characteristics of purslane (Portulaca oleraceae L.). Dry Technol 22:2183–2200

    Article  Google Scholar 

  12. AOAC (1990) Official methods of analysis. Association of Official Analytical Chemists (No: 934.06), Arlington

  13. Doymaz I (2004) Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosyst Eng 89:281–287

    Article  Google Scholar 

  14. Roberts JS, Kidd DR, Padilla-Zakour O (2008) Drying kinetics of grape seeds. J Food Eng 89:460–465

    Article  Google Scholar 

  15. Ghodake HM, Goswami TK, Chakraverty A (2006) Mathematical modeling of withering characteristics of tea leaves. Dry Technol 24:159–164

    Article  Google Scholar 

  16. Vega-Gálvez A, Ayala-Aponte A, Nottle E, de la Fuente L, Lemus-Mondaca L (2009) Mathematical modelling of mass transfer during convective dehydration of brown algae Macrocystis pyrifera. Dry Technol 26:1610–1616

    Article  Google Scholar 

  17. Dissa AO, Bathiebo DJ, Desmorieux H, Coulibaly O, Koulidiati J (2011) Experimental characterisation and modelling of thin layer direct solar drying of Amelia and Brooks mangoes. Energ 36:2517–2527

    Article  Google Scholar 

  18. Sharma GP, Prasad S (2004) Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. J Food Eng 65:609–617

    Article  Google Scholar 

  19. Shen F, Peng L, Zhang Y, Wu J, Zhang X, Yang G, Peng H, Qi H (2011) Thin-layer drying kinetics and quality changes pf sweet sorghum stalk for ethanol production as affected by drying temperature. Ind Crop Prod 34:1588–1594

    Article  Google Scholar 

  20. Corzo O, Bracho N, Pereira A, Vásquez A (2008) Weibull distribution for modelling air drying of coroba slices. LWT Food Sci Technol 41:2023–2028

    Article  Google Scholar 

  21. Taheri-Garavand A, Rafiee S, Keyhani A (2011) Study on effective moisture diffusivity, activation energy and mathematical modeling of thin layer drying kinetics of bell pepper. Aust J Crop Sci 5(2):128–131

    Google Scholar 

  22. Lee JH, Kim HJ, Rhim JW (2012) Vacuum drying characteristics of Salicornia herbacea L. J Agric Sci Tech 14:587–598

    Google Scholar 

  23. Tunde-Akintunde TY (2011) Mathematical modeling of sun and solar drying of chilli pepper. Renew Energ 36:2139–2145

    Article  Google Scholar 

  24. Markowski M, Stankiewicz I, Zapotoczny P, Borowska J (2006) Effect of variety on drying characteristics and selected quality attributes of dried carrots. Dry Technol 24:1011–1018

    Article  Google Scholar 

  25. Demiray E, Tulek Y (2012) Thin-layer drying of tomato (Lycopersicum esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer. Heat Mass Transfer 48:841–847

    Article  Google Scholar 

  26. Erbay Z, Icier F (2010) Thin-layer drying behaviors of olive leaves (Olea europaea L.). J Food Process Eng 33:287–308

    Article  Google Scholar 

  27. Zogzas NP, Maroulis ZB, Marinos-Kouris D (1996) Moisture diffusivity data compilation in foodstuffs. Dry Technol 14:2225–2253

    Article  Google Scholar 

  28. Nourhène B, Mohammed K, Nabil K (2008) Experimental and mathematical investigations of convective solar drying of four varieties of olive leaves. Food Bioprod Process 86:176–184

    Article  Google Scholar 

  29. Khazaei J, Arabhosseini A, Khosrobeygi Z (2008) Application of superposition technique for modeling drying behavior of Avishan (Zataria multiflora) leaves. Trans ASABE 51:1383–1393

    Google Scholar 

  30. Phoungchandang S, Tochip L, Srijesdaruk V (2008) White mulberry leaf drying by tray and heat pump dehumidified dryers. World J Agric Sci 4:844–851

    Google Scholar 

  31. Doymaz I (2006) Thin-layer drying behaviour of mint leaves. J Food Eng 74:370–375

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Doymaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doymaz, İ. Hot-air drying of purslane (Portulaca oleracea L.). Heat Mass Transfer 49, 835–841 (2013). https://doi.org/10.1007/s00231-013-1128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1128-9

Keywords

Navigation