Skip to main content
Log in

Heat transfer of dilute viscoelastic solutions in helical exchangers

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The study examined heat transfer of two dilute viscoelastic solutions in helical exchangers of circular cross-section. Ten helical coil heat exchangers with diameter ratios ranging from 4 to 50 were constructed. Results showed doubling the concentrations of polymer increased heat transfer performance by 12 %. The results were expressed in forms of some existing equations and were found to be in fair agreement to previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

cp :

Specific heat

d:

Tube diameter

D:

Helix diameter of curvature

Dn:

Dean number (Re(di/D)0.5)

Gz:

Graetz number (mcp/kL)

h:

Heat transfer coefficient

hs :

Heat transfer coefficient, straight tube

hc :

Heat transfer coefficient, curved tube

k:

Thermal conductivity

L:

Length

m:

Mass

Nu:

Nusselt number (hd/k)

q:

Heat flux

Q:

Volumetric flow rate (m3/s)

Re:

Reynolds number (dvρ/μ)

Pr:

Prandtl number (cpμ/k)

T1 :

Inlet temp (°C)

T2 :

Outlet temp (°C)

Tw :

Average wall temp (°C)

U:

Overall heat transfer coefficient

v:

Velocity

W:

Watt

ρ:

Density

μ:

Viscosity

s:

Straight

c:

Curved

w:

Wall

1:

Inlet

2:

Outlet

References

  1. Bergles AE (2011) Recent developments in enhanced heat transfer. Heat Mass Transf 47:1001–1008

    Article  Google Scholar 

  2. Rogers GFC, Mayhew YR (1964) Heat transfer and pressure loss in helically helical tubes with turbulent flow. Int J Heat Mass Transf 7:1207–1216

    Article  Google Scholar 

  3. Acharya N, Sen M, Chang HC (2001) Analysis of heat transfer enhancement in helical tube heat exchangers. Int J Heat Mass Transf 44:3189–3199

    Article  MATH  Google Scholar 

  4. Cengiz Y, Yasar B, Dursun P (1995) Heat transfer and pressure drop in rotating helical pipes. Appl Energy 50(1):85–94

    Article  Google Scholar 

  5. Kalb CE, Seader JD (1974) Fully developed viscous-flow heat transfer in curved circular tubes with uniform wall temperature. Am Inst Chem Eng J 20:340–346

    Article  Google Scholar 

  6. Kubair V, Kuloor NR (1966) Heat transfer to Newtonian fluids in helical pipes in laminar flow. Int J Heat Mass Transf 9:63–75

    Article  Google Scholar 

  7. Liu S, Masliyah JH (1994) Developing convective heat transfer in helical pipes with finite pitch. Int J Heat Fluid Flow 15(1):66–74

    Article  Google Scholar 

  8. Naphon P, Wongwises S (2006) A review of flow and heat transfer characteristics in curved tubes. Renew Sustain Energy Rev 10:463–490

    Article  Google Scholar 

  9. Patankar SV, Pratap VS, Spalding DB (1974) Prediction of laminar flow and heat transfer in helically helical pipes. J Fluid Mech 62:539–551

    Article  MATH  Google Scholar 

  10. Prusa J, Yao LS (1982) Numerical solution for fully-developed flow in heated curved tubes. J Fluid Mech 123:503–522

    Article  MATH  Google Scholar 

  11. Rindt CCM, Sillekens JJM, van Steenhoven AA (1999) The influence of the wall temperature on the development of heat transfer and secondary flow in a helical heat exchanger. Int Commun Heat Mass Transf 26:187–198

    Article  Google Scholar 

  12. Seban RA, McLaughlin EF (1963) Heat transfer in tube coils with laminar and turbulent flow. Int J Heat Mass Transf 6:387–395

    Article  Google Scholar 

  13. Tarbell JM, Samuels MR (1973) Momentum and heat transfer in helical coils. Chem Eng J 5:117–127

    Article  Google Scholar 

  14. Shokouhmand H, Salimpour MR (2007) Entropy generation analysis of fully developed laminar forced convection in a helical tube with uniform wall temperature. Heat Mass Transf 44:213–220

    Article  Google Scholar 

  15. Yang R, Chang CF (1994) Combined free and forced convection for developed flow in curved pipes with finite curvature ratio. Int J Heat Fluid Flow 15:470–476

    Article  Google Scholar 

  16. Yang G, Dong F, Ebadian MA (1995) Laminar forced convection in a helicoidal pipe with finite pitch. Int J Heat Mass Transf 38:853–862

    Article  MATH  Google Scholar 

  17. Zapryanov Z, Christov C, Toshev E (1980) Fully-developed laminar flow and heat transfer in curved tubes. Int J Heat Mass Transf 23:873–880

    Article  MATH  Google Scholar 

  18. Mena B, Best G, Bautista P, Sanchez T (1978) Heat transfer in non-Newtonian flow through pipes. Rheol Acta 17(4):454–457

    Article  Google Scholar 

  19. Hartnett JP, Kostic M (1985) Heat transfer to a viscoelastic fluid in laminar flow through a rectangular channel. Int J Heat Mass Transf 28(6):1147–1155

    Article  Google Scholar 

  20. Yue P, Dooley J, Fenga JJ (2008) A general criterion for viscoelastic secondary flow in pipes of noncircular cross section. J Rheol 52(1):315–332

    Article  Google Scholar 

  21. Siginer DA, Letelier MF (2010) Heat transfer asymptote in laminar flow of non-linear viscoelastic fluids in straight non-circular tubes. Int J Eng Sci 48(11):1544–1562

    Article  MathSciNet  MATH  Google Scholar 

  22. Agostini B, Watel B, Bontemps A, Thonon B (2002) Friction factor and heat transfer coefficient of R134a liquid flow in mini-channels. Appl Therm Eng 22(16):1821–1834

    Article  Google Scholar 

  23. Ismail Z, Karim R (2012) Determination of optimum aspect ratio on laminar flow heat transfer of dilute viscoelastic solutions in flattened tube heat exchangers. J Heat Mass Transf 48(8):1319–1331

    Article  Google Scholar 

  24. Tsang HY, James DF (1980) Reduction of secondary motion in curved tubes by polymer additives. J Rheol 24:589–601

    Article  Google Scholar 

  25. Hsu C-F, Patankar SV (1982) Analysis of laminar non-Newtonian flow and heat transfer in curved tubes. Am Inst Chem Eng J 28(4):610–616

    Article  Google Scholar 

  26. Inaba H, Aly WIA, Haruki N, Horibe A (2005) Flow and heat transfer characteristics of drag reducing surfactant solution in a helically coiled pipe. Heat Mass Transf 41(10):940–952

    Article  Google Scholar 

  27. Ismail Z, Karim R (2012) Consolidation of heat transfer coefficients of viscoelastic simulated food solutions in helical exchangers. J Food Eng 108(1):122–127

    Article  Google Scholar 

  28. Mori Y, Nakayama W (1967) Study on forced convection heat transfer in curved pipes. Int J Heat Mass Transf 10:681–694

    Article  Google Scholar 

  29. Srinivasan PS, Nandapurkar SS, Holland FA (1968) Pressure drop and heat transfer in coils. Chem Eng (Lond) 218:113–119

    Google Scholar 

  30. Dravid AN, Smith KA, Merrill EW, Brain PLT (1971) Effect of secondary fluid motion on laminar flow heat transfer in helically helical tubes. Am Inst Chem Eng J 17:1114–1122

    Article  Google Scholar 

  31. Ismail Z, Karim R (2012) Heat transfer of dilute polyacrylamide solutions in flattened tube exchangers. Exp Heat Transf. Accepted 27 Sept 2012

  32. Ismail Z, Karim R (2012) Laminar flow heat transfer of dilute viscoelastic solutions in flattened tube heat exchangers. Appl Therm Eng 39:171–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Ismail or R. Karim.

Appendix: Error estimates

Appendix: Error estimates

Density of water at 20 °C = 0.9982 g/l

Density of water at 40 °C = 0.9922 g/l

Error in assuming constant density = 0.006/0.9952 approximately = 0.5 %

Average flowrate = 10 ml/s

The gear pump was calibrated to read up to an accuracy of 0.2 ml/s

Average error in measuring volumetric flowrate = 0.2/10 approximately = 2 %

Error in obtaining mass flowrate = (0.5 + 2)% = 2.5 %

Error in assuming constant specific heat = 0.004/1.000 approximately = 0.5 %

Thermal conductivity at 285 K = 0.5818 w/(mK)

Thermal conductivity at 300 K = 0.6096 w/(mK)

Error in assuming constant thermal conductivity = 0.0278/0.5957 approximately = 5 %

Average length of exchanger tubes = 74.81 cm

Estimated error in length = 0.5/74.81 approximately = 0.5 %

Average error in Graetz Number (mcp/kL) = (2.5 + 0.5 + 5 + 0.5) % = 8.5 %

Average internal diameter is obtained by back-calculating from internal volumes and length of tubes. This gives an error of less than 2 %.

Velocity is proportional to Flowrate/(diameter)2

Error in velocity = (2.5 + 4) % = 6.5 %

Variations of viscosities and temperature for the solutions were experimentally determined.

Estimated error in reading from the calibration curves is about 1 %

Estimated error in Reynolds Number = (2 + 6.5 + 1) % = 9.5 %

Average diameter of curvature = 141.4 mm

Error in diameter of curvature = 0.5/141.4 approximately = 0.4 %

Error in Dean Number [Re(di/D)0.5] = [9.5 + (2 + 0.4)/2]  % = 10.7 %

Overall error in Prandtl Number (cpμ/k) = (0.5 + 1 + 5)  % = 6.5 %.

Error associated with using the Mori and Nakayama form = [(8.5/3) + (10.7/2)] % = 8.18 %

Error associated with using the Dravid form = [(10.7/2) + (6.5 × 0.175)] % = 6.5 %

Error associated with using the Cengiz form = [(10.7 × 0.864) + (6.5 × 0.4)] % = 11.8 %

Error associated with using the Kalb and Seader form = [(10.7*0.5) + (6.5*0.1)] % = 6 %.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismail, Z., Karim, R. Heat transfer of dilute viscoelastic solutions in helical exchangers. Heat Mass Transfer 49, 711–721 (2013). https://doi.org/10.1007/s00231-013-1113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1113-3

Keywords

Navigation