Skip to main content
Log in

Thermal performance analysis of nanofluids in a thermosyphon heat pipe using CFD modeling

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A computational fluid dynamics model for simulation of a thermosyphon with two-phase flow including phase change heat transfer was developed. De-ionized water and CuO/Water nanofluid were used as working fluids in the thermosyphon. Results show that, maximum heat flux of the nanofluid is about 46 % higher than that of water. Also by increasing the nanofluid concentration, the wall temperature decreases, and the concentration of 1 wt% is the optimum concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

c p :

Heat capacity (J/kg K)

g:

Gravity acceleration (m/s2)

p:

Pressure (Pa)

q:

Heat flux (W/m2)

Q:

Input power (W)

SE :

Energy source (J/m3 s)

Sf :

Momentum source (kg/m2 s2)

T:

Temperature (K)

\( \bar{T}_{e} \) :

Mean evaporator wall temperature (K)

Ts :

Saturation temperature (K)

t:

Time (s)

V:

Velocity (m/s)

X:

Volume fraction

α :

Phase index

φ:

Nanoparticles mass fraction

μ :

Viscosity (Pa s)

k :

Effective thermal conductivity

ρ :

Density (kg/m3)

ΔH :

Vaporization enthalpy (J/kg)

e:

Evaporator

c:

Condenser

h:

Heat source

nf:

Nanofluid

w:

Water (base fluid)

s:

Solid particle

sat:

Saturation

References

  1. Lu L, Liu Z, Xiao H (2011) Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors, part 1: indoor experiment. Sol Energy 85:379–387

    Article  Google Scholar 

  2. Chen B, Chang Y, Lee W, Chen S (2009) Long-term thermal performance of a two-phase thermosyphon solar water heater. Sol Energy 83:1048–1055

    Article  Google Scholar 

  3. Tsoi V, Chang SW, Chiang KF, Huang CC (2011) Thermal performance of plate-type loop thermosyphon at sub-atmospheric pressures. Appl Therm Eng 31:2556–2567

    Article  Google Scholar 

  4. Vasiliev L, Lossouarn D, Romestant C, Alexandre A, Bertin Y, Piatsiushyk Y, Romanenkov V (2008) Loop heat pipe for cooling of high-power electronic components. Int J Heat Mass Transf 52:301–308

    Article  Google Scholar 

  5. Noie SH, Majideian GR (1999) Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals. Appl Therm Eng 20:1271–1282

    Article  Google Scholar 

  6. Yang TL, Chang SW (2009) Heat transfer in tilted reciprocating anti-gravity open thermosyphon. Int J Heat Mass Transfer 52:880–893

    Article  MathSciNet  Google Scholar 

  7. Jiao B, Qiu LM, Zhang XB, Zhang Y (2008) Investigation on the effect of filling ratio on the steady-state heat transfer performance of a vertical two-phase closed thermosyphon. Appl Therm Eng 28:1417–1426

    Article  Google Scholar 

  8. Silva AK, Mantelli MBH (2004) Thermal applicability of two-phase thermosyphons in cooking chambers—experimental and theoretical analysis. Appl Therm Eng 24:717–733

    Article  Google Scholar 

  9. Zhu N, Vafai K (1999) Analysis of cylindrical heat pipes incorporating the effects of liquid–vapor coupling and non-Darcian transport—a closed form solution. Int J Heat Mass Transf 42:3405–3418

    Article  MATH  Google Scholar 

  10. Abreu SL, Colle S (2004) An experimental study of two-phase closed thermosyphon for compact solar domestichot-water system. Sol Energy 76:141–145

    Article  Google Scholar 

  11. Ghajar M, Darabi J (2005) Numerical modeling of evaporator surface temperature of a micro loop heat pipe at steady-state condition. J Micromech Microeng 15:1963–1971

    Article  Google Scholar 

  12. Rahmat M, Hubert P (2010) Two-phase simulations of micro heat pipes. Comput Fluids 39:451–460

    Article  MATH  Google Scholar 

  13. Song F, Ewing D, Ching CY (2004) Experimental investigation on the heat transfer characteristics of axial rotating heat pipes. Int J Heat Mass Transf 47:4721–4731

    Article  Google Scholar 

  14. Liu ZH, Yang XF, Guo GL (2007) Effect of nanoparticles in nanofluid on thermal performance in a miniature thermosyphon. J Appl Phys 102:013526–013534

    Article  Google Scholar 

  15. Shafahi M, Bianco V, Vafai K, Manca O (2010) An investigation of the thermal performance of cylindrical heat pipes using nanofluids. Int J Heat Mass Transf 53:376–383

    Article  MATH  Google Scholar 

  16. Shafahi M, Bianco V, Vafai K, Manca O (2010) Thermal performance of flat-shaped heat pipes using nanofluids. Int J Heat Mass Transf 53:1438–1445

    Article  MATH  Google Scholar 

  17. Teng TP, Hsu HG, Mo HE, Chen CC (2010) Thermal efficiency of heat pipe with alumina nanofluid. J Alloys Comp 504:380–384

    Article  Google Scholar 

  18. Kang SW, Wei WC, Tsai SH, Yang SY (2006) Experimental investigation of silver nano-fluid on heat pipe thermal performance. Appl Therm Eng 26:2377–2382

    Article  Google Scholar 

  19. Khandekar S, Joshi MY, Mehta B (2008) Thermal performance of closed two-phase thermosyphon using nanofluids. Int J Therm Sci 47:659–667

    Article  Google Scholar 

  20. Han WS, Rhi SH (2011) Thermal characteristics of grooved heat pipe with hybrid nanofluids. Therm Sci 15:195–206

    Article  Google Scholar 

  21. Naphon P, Thongkum D, Assadamongkol P (2009) Heat pipe efficiency enhancement with refrigerant–nanoparticles mixtures. Energy Conv Manag 50:772–776

    Article  Google Scholar 

  22. Huminic G, Huminic A, Morjan I, Dumitrache F (2011) Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles. Int J Heat Mass Transf 54:656–661

    Article  Google Scholar 

  23. Liu ZH, Li YY, Bao R (2010) Thermal performance of inclined grooved heat pipes using nanofluids. Int J of Therm Sci 49:1680–1687

    Article  Google Scholar 

  24. Jeon SS, Kim SJ, Park GC (2009) CFD simulation of condensing vapor bubble using VOF model. World Acad Sci Eng Technol 60:209–216

    Google Scholar 

  25. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Taylor and Francis Group, New York

    MATH  Google Scholar 

  26. Versteeg HK, Malasekera W (1960) An introduction to computational fluid dynamics. McGraw Hill, New York

    Google Scholar 

  27. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–159

    Article  Google Scholar 

  28. Drew DA, Passman SL (1999) Theory of multi component fluids. Springer, Berlin

    Google Scholar 

  29. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707

    Article  MATH  Google Scholar 

  30. Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticles Res 5:167–173

    Article  Google Scholar 

  31. Duangthongsuk W, Wongwises S (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci 33:706–714

    Article  Google Scholar 

  32. Duangthongsuk W, Wongwises S (2010) An experimental study on the heat transfer performance and pressure drop of TiO2-water Nanofluids Flowing under a Turbulent Flow Regime. Int J Heat Mass Transf 53:334–344

    Article  Google Scholar 

  33. Alizadehdakhel A, Rahimi M, Alsairafi AA (2010) CFD modeling of flow and heat transfer in a thermosyphon. Int Comm Heat Mass Transf 37:312–318

    Article  Google Scholar 

  34. De Schepper SCK, Heynderickx GJ, Marin GB (2008) CFD modeling of all gas–liquid and vapor–liquid flow regimes predicted by the Baker chart. Chem Eng J 138:349–357

    Article  Google Scholar 

  35. Senthilkumar R, Vaidyanathan S, Sivaraman B (2010) Performance analysis of heat pipe using copper nanofluid with aqueous solution of n-butanol. Int J Mech and Mat Eng 4:251–256

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their appreciation to the Iranian Nanotechnology Initiative Council for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haghshenasfard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmaie, L., Haghshenasfard, M., Mehrabani-Zeinabad, A. et al. Thermal performance analysis of nanofluids in a thermosyphon heat pipe using CFD modeling. Heat Mass Transfer 49, 667–678 (2013). https://doi.org/10.1007/s00231-013-1110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1110-6

Keywords

Navigation