Heat and Mass Transfer

, Volume 49, Issue 5, pp 629–656 | Cite as

Temperature impact on the turbulence generated by the interaction of twin inline inclined jets in crossflow

  • A. Radhouane
  • I. Bhouri Baouab
  • N. Mahjoub Saïd
  • H. Mhiri
  • Ph. Bournot
  • G. Le Palec


Consideration is given to the interaction of twin tandem jets with an oncoming uniform crossflow. A variable temperature is assumed for the emitted jets while the crossflow is maintained constant, equivalent to the ambient temperature. Both jet nozzles are elliptic, as initially inclined with an angle of 60°, placed three diameters apart in line with the crossflow and discharge a nonreactive fume. The handled configuration is numerically simulated in the present work, by means of the finite volume method together with a non uniform grid system. The model is first validated with reference to available experimental data, in the simple isothermal case of air jets in air crossflow. It is then upgraded by considering a nonreactive fume discharged at a variable temperature. The upgraded model turbulence is described by means of the Reynolds Stress Model second order turbulent closure model. The present work is to our knowledge pioneering in the introduction of this particular model is such a configuration and its introduction proved to be highly valuable since is described satisfyingly the turbulent behavior of the resulting flowfield. This behavior is, precisely, specified in terms of shear stress components whose evolutions, explored along the different directions of the domain, showed a more pronounced vertical mixing, and gave rise to more significant vortices in most characterizing zones: near the injection plane as well as within the discharging nozzles.

List of symbols


Specific heat, J kg−1 K−1


Nozzles’ spacing, m


Term of production due to buoyancy forces, kg m−1 s−3


Term of production due to the mean gradients, kg m−1 s−3


Injection to mainstream velocity ratio (R = ui/U), no unit

Si j

Mean strain sate, no unit


Temperature, K


Crossflow velocity, m s−1


Injection velocity, m s−1


Jet nozzle diameter, m

\( \tilde{f} \)

Mass fraction, no unit


Gravitational acceleration, m s−2


Kinetic energy of turbulence, m2 s−2


Velocity component along i direction, ms−1

\( \overline{{{\text{u}}_{\text{i}}^{\prime \prime } {\text{u}}_{\text{j}}^{\prime \prime } }} \)

Reynolds stress, m2 s−2


Coordinate along i direction, m

Greek symbols


Injection angle with reference to the free stream (x axis), °


Thermal expansion coefficient, K−1


Kronecker symbol (=1 if i = j and 0 if i ≠ j), no unit


Dissipation rate of the turbulent kinetic energy, no unit


Thermal diffusivity, m2 s−1


Thermal conductivity, W (mK)


Kinetic viscosity, kg (m s)−1


Turbulent (or eddy) viscosity, kg (m s)−1


Kinematic viscosity, m2 s−1


Density, Kg m−3


Conditions in crossflow, no unit


Exit section of the jet, no unit



Reynolds average, no unit


Favre average, no unit

Dimensionless groups


Prandtl number (Pr = μCp/λ)


Reynolds number (Re = uid/ν)


Schmidt number (Sc = ν/κ)


  1. 1.
    Ohanian T, Rahai HR (2001) Numerical investigations of multi turbulent jets in a crossflow. Paper no. AIAA 2001-1049, 39th AIAA Aerospace Sciences meeting and exhibit, Reno, Nevada, JanuaryGoogle Scholar
  2. 2.
    Radhouane A, Mahjoub Saïd N, Mhiri H, Le Palec G, Bournot P Contribution à la modélisation de l’interaction entre deux jets inclinés et un écoulement transversal: refroidissement par jets. In: Proceedings of the 13rd JITH (Journées Internationales de Thermique), 28–30 Aug 2007, Albi, France, pp 271–275Google Scholar
  3. 3.
    Radhouane A, Mahjoub Saïd N, Mhiri H, Le Palec G, Bournot P (2008) Impact of the initial streamwise inclination of a double jet emitted within a cool crossflow on its temperature field and pollutants dispersion. Heat Mass Transf 45(6):805–823CrossRefGoogle Scholar
  4. 4.
    Piomelli AU, Ong BL, Wallace CJ, Laadhari DF (1993) Reynolds stress and vorticity in turbulent wall flows. Appl Sci Res 51:365–370CrossRefGoogle Scholar
  5. 5.
    Wei T, McMurtry P, Klewicki J, Fife P (2005) Mesoscaling of Reynolds shear stress in turbulent channel and pipe flows. AIAA J 43(11)Google Scholar
  6. 6.
    Jones WP, Wille M (1996) Large-eddy simulation of a plane jet in a cross-flow. Int J Heat Fluid Flow 17:296–306CrossRefGoogle Scholar
  7. 7.
    Chenault CF, Beran PS (1998) k–ε and Reynolds stress turbulence model comparisons for two-dimensional injection flows. AIAA J 36(8)Google Scholar
  8. 8.
    Muppidi S, Mahesh K (2005) Direct numerical simulation of turbulent jets in crossflow. In: 43rd AIAA aerospace sciences meeting and exhibit. American Institute of Aeronautics and Astronautics paper 2005-1115, 10–13 Jan, Reno, NevadaGoogle Scholar
  9. 9.
    Kawai S, Lele SK (2007) Mechanisms of jet mixing in a supersonic crossflow: a study using large-eddy simulation. Center for Turbulence Research, Annual Research BriefsGoogle Scholar
  10. 10.
    Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103(1):16MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gaitonde DV, Visbal MR (2000) Padé-plusmn: type higher-order boundary filters for the Navier–Stokes equations. AIAA J 38(11):2103–2112CrossRefGoogle Scholar
  12. 12.
    Bremhorst K, Gehrke PJ (2000) Measured Reynolds stress distributions and energy budgets of a fully pulsed round air jet. Exp Fluids 28:519–531CrossRefGoogle Scholar
  13. 13.
    Khan ZU, Johnston JP (2000) On vortex generating jets. Int J Heat Fluid Flow 21:506–511CrossRefGoogle Scholar
  14. 14.
    Ahmed S, Hart J, Nikolov J, Solnordal C, Yang W, Naser J (2007) The effect of jet velocity ratio on aerodynamics of a rectangular slot-burner in the presence of cross-flow. Exp Thermal Fluid Sci 32:362–374CrossRefGoogle Scholar
  15. 15.
    Zhang X (2000) Turbulence measurements of an inclined rectangular jet embedded in a turbulent boundary layer. Int J Heat Fluid Flow 21:291–296CrossRefGoogle Scholar
  16. 16.
    Renze P, Schröder W, Meinke M (2008) Large-eddy simulation of film cooling flows at density gradients. Int J Heat Fluid Flow 29:18–34CrossRefGoogle Scholar
  17. 17.
    Smith SH, Mungal MG (1998) Mixing, structure and scaling of the jet in crossflow. J Fluid Mech 357:83–122CrossRefGoogle Scholar
  18. 18.
    Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows. Int J Heat Mass Transf 15:1787–1806MATHCrossRefGoogle Scholar
  19. 19.
    Schieste R, Launder BE (1993) Modélisation et simulation des écoulements turbulents. Hermès, ParisGoogle Scholar
  20. 20.
    Davidson L (2009) An introduction to turbulence models, publication 97/2. Chalmers University of Technology, Göteborg, Sweden, 14 Aug 2009Google Scholar
  21. 21.
    Mahjoub Said N, Mhiri H, Golli S, Le Palec G, Bournot P (2003) Three dimensional numerical calculations of a jet in an external crossflow: application to pollutant dispersion, J. of heat transfer, vol 125. ASME, AprilGoogle Scholar
  22. 22.
    Demuren AO, Rodi W (1987) Three dimensional numerical calculations of flow and plume spreading past cooling towers. J Heat Transf 109:113–119CrossRefGoogle Scholar
  23. 23.
    Acharya S (1999) Large eddy simulations of jets in crossflow: freestream turbulence intensity effects, ASME-FEDSM 99-7799. ASME/JSME fluids engineering meeting, San Francisco, July 1999Google Scholar
  24. 24.
    Tyagi M, Acharya S (1999) Large eddy simulations of jets in crossflow: freestream turbulence intensity effects, ASME-FEDSM 99-7799. ASME/JSME fluids engineering meeting, San Francisco, July 1999Google Scholar
  25. 25.
    Radhouane A, Mahjoub Saïd N, Mhiri H, Le Palec G, Bournot P (2009) Effect of two inline jets’s temperature on the turbulence they generate within a crossflow. Eng Lett 17(3):178–183Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Radhouane
    • 1
  • I. Bhouri Baouab
    • 1
  • N. Mahjoub Saïd
    • 2
  • H. Mhiri
    • 1
  • Ph. Bournot
    • 3
  • G. Le Palec
    • 3
  1. 1.TTPI, École Nationale d’Ingénieurs de MonastirUniversité de MonastirMonastirTunisia
  2. 2.LGM, Institut Préparatoire aux Etudes d’Ingénieurs de MonastirUniversité de MonastirMonastirTunisia
  3. 3.IUSTI, UMR CNRS 7343, Technopôle de Château-GombertMarseille Cedex 13France

Personalised recommendations