Skip to main content
Log in

Application of solution structure theorems to Cattaneo–Vernotte heat conduction equation with non-homogeneous boundary conditions

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this study, a non-Fourier heat conduction problem formulated using the Cattaneo–Vernotte (C–V) model with non-homogeneous boundary conditions is solved with the superposition principle in conjunction with solution structure theorems. It is well known that the aforementioned analytical method is not suitable for such a class of thermal problems. However, by performing a functional transformation, the original non-homogeneous partial differential equation governing the physical problem can be cast into a new form such that it consists of a homogeneous part and an additional auxiliary function. As a result, the modified homogeneous governing equation can then be solved with solution structure theorems for temperatures inside a finite planar medium. The methodology provides a convenient, accurate, and efficient solution to the C–V heat conduction equation with non-homogeneous boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\( \mathcal{A} \) :

Constant, Table 1

Table 1 Constants used in the temperature solutions for the two physical problems
b :

External heat flux decaying factor

\( \mathcal{B} \) :

Constant, Table 1

\( \mathcal{C} \) :

Constant, Table 1

c :

Wave speed (m/s)

c p :

Specific heat (J/kg K)

\( \mathcal{D} \) :

Constant, Table 1

\( \mathcal{E} \) :

Constant, Table 1

\( \mathcal{F} \) :

Constant, Table 1

\( \Im \) :

Dimensionless internal heat generation

f :

Forcing function

f r :

Reference heat flux (W/m2)

f 1 :

Boundary condition at x = 0

f 2 :

Boundary condition at x = 1

g :

Dimensionless heat generation

\( \mathcal{H}_{1} \) :

Dimensionless initial condition

\( \mathcal{H}_{2} \) :

Dimensionless initial temperature rate of change

k :

Thermal conductivity (W/m K)

n :

Index

q :

Dimensionless heat flux

\( q^{*} \) :

Heat flux (W/m2)

q o :

Dimensionless incident heat flux magnitude

Τ :

Dimensionless temperature

\( T^{*} \) :

Temperature (K)

t :

Dimensionless time

\( t^{*} \) :

Time (s)

u :

Dimensionless temperature solution for the homogeneous problem

u 1 :

Dimensionless temperature solution due to ψ function contribution

u 2 :

Dimensionless temperature solution due to φ function contribution

u 3 :

Dimensionless temperature solution due to f function contribution

w :

Auxiliary function

x :

Dimensionless slab thickness

\( x^{*} \) :

Slab thickness (m)

α :

Thermal diffusivity, k/ρc p (m2/s)

\( \gamma_{n} \) :

Eigenvalue, \( \sqrt {(n\pi )^{2} - 1 } \)

ε:

Relative error

\( \zeta \) :

Dummy variable for time

\( \xi \) :

Dummy variable for space

ρ :

Density (kg/m3)

\( \tau_{CV} \) :

Relaxation time constant (s)

φ :

Initial temperature function

ψ:

Initial temperature rate of change function

References

  1. Chen JK, Tzou DY, Beraun JE (2005) Numerical investigation of ultrashort laser damage in semiconductors. Int J Heat Mass Transf 48(3–4):501–509

    Article  Google Scholar 

  2. Yeung WK, Lam TT (1999) Thermal analysis of anisotropic thin-film superconductors. In: Advances in electronic packaging, EEP-vol 26-2, pp 1261–1268

  3. Chester M (1963) Second sound in solids. Phys Rev 131:2013–2015

    Article  Google Scholar 

  4. Brown JB, Chung DY, Mathews PW (1966) Heat pulses at low temperatures. Phys Lett 21:241–243

    Article  Google Scholar 

  5. Zhou J, Zhang Y, Chen JK (2008) Non-Fourier heat conduction effect on laser-induced thermal damage in biological tissues. Numer Heat Transf Part A Appl 54(1):1–19

    Article  MathSciNet  Google Scholar 

  6. Torii S, Yang W-J (2005) Heat transfer mechanisms in thin film with laser heat source. Int J Heat Mass Transf 48:537–544

    Article  MATH  Google Scholar 

  7. Robin JE, Nordin P (1975) Enhancement of CW laser melt-through of opaque solid materials by supersonic transverse gas flow. Appl Phys Lett 26(6):289–292

    Article  Google Scholar 

  8. Maxwell JC (1867) On the dynamic theory of gases. Philos Trans R Soc Lond 157:49–88

    Article  Google Scholar 

  9. Cattaneo C (1958) Sur une forme de l’Equation de la chaleur elinant le paradoxe d’une propagation instantance. Comput Rendus Acad Sci Paris 247:431–433

    MathSciNet  Google Scholar 

  10. Vernotte MP (1958) Les Paradoxes de la Theorie Continue de l’Equation de la Chaleur. Comput Rendus Acad Sci Paris 246:3154–3155

    MathSciNet  Google Scholar 

  11. Carey GF, Tsai M (1982) Hyperbolic heat transfer with reflection. Numer Heat Transf 5:309–327

    Google Scholar 

  12. Lewandowska M (2001) Hyperbolic heat conduction in the semi-infinite body with a time-dependent laser heat source. Heat Mass Transf 37:333–342

    Article  Google Scholar 

  13. Moosaie A (2008) Non-Fourier heat conduction in a finite medium subjected to arbitrary non-periodic surface disturbance. Int Commun Heat Mass Transf 35:376–383

    Article  Google Scholar 

  14. Ozisik MN, Vick B (1984) Propagation and reflection of thermal waves in a finite medium. Int J Heat Mass Transf 27(10):1845–1854

    Article  Google Scholar 

  15. Tang DW, Araki N (2000) Non-Fourier heat conduction behavior in finite mediums under pulse surface heating. Mater Sci Eng A292:173–178

    Google Scholar 

  16. Wu C-Y (1988) Integral equation solution for hyperbolic heat conduction with surface radiation. Int Commun Heat Mass Transf 15:365–374

    Article  Google Scholar 

  17. Lam TT, Fong E (2011) Application of solution structure theorems to non-Fourier heat conduction problems: analytical approach. Int J Heat Mass Transf 54(23–24):4796–4806

    Article  MATH  Google Scholar 

  18. Lam TT, Fong E (2011) Heat diffusion vs. wave propagation in solids subjected to exponentially-decaying heat source: analytical solution. Int J Therm Sci 50(11):2104–2116

    Article  Google Scholar 

  19. Wang LQ, Zhou XS, Wei XH (2008) Heat conduction: mathematical models and analytical solutions. Springer, Heidelberg

    MATH  Google Scholar 

  20. Yeung WK, Lam TT (1998) A numerical scheme for non-Fourier heat conduction, part I: one-dimensional problem formulation and applications. Numer Heat Transf Part B Fundam 33(2):215–233

    Article  Google Scholar 

  21. Lam TT (2010) Thermal propagation in solids due to surface laser pulsation and oscillation. Int J Therm Sci 49(9):1639–1648

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung T. Lam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, T.T., Fong, E. Application of solution structure theorems to Cattaneo–Vernotte heat conduction equation with non-homogeneous boundary conditions. Heat Mass Transfer 49, 509–519 (2013). https://doi.org/10.1007/s00231-012-1097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1097-4

Keywords

Navigation