Skip to main content
Log in

CFD modeling of hydrodynamics and mass transfer of Rhodamine B in annular reactor

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The hydrodynamics and mass transfer are the two crucial issues in annular reactors. An accurate prediction of these issues is required for design, optimization and scale-up applications. The present study deals with the modeling and simulation of flow through an annular reactor at different hydrodynamic conditions using computational fluid dynamics (CFD) to investigate the hydrodynamics and mass transfer. CFD modeling was utilized to predict velocity distribution, average velocity and average mass transfer coefficient in the annular geometry. The results of CFD simulations were compared with the mathematically derived equations and already developed correlations for validation purposes. CFD modeling was found suitable for predicting hydrodynamics and mass transfer for annular geometry under laminar flow conditions. It was observed that CFD also provides local values of the parameters of interest in addition to the average values for the simulated geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\( \vec{v} \) :

Velocity vector (m s−1)

P:

Pressure (N m−2)

Y i :

Mass fraction of species i (dimensionless)

\( \vec{J}_{i} \) :

Diffusive flux of species i (kg m−2 s−1)

R i :

Rate of production/depletion of species i (kg m−2 s−1)

D i,m :

Diffusivity of species i in the mixture (m2 s−1)

∇:

Divergence (m−1)

v z :

Axial velocity (m s−1)

\( \left\langle {v_{z} } \right\rangle \) :

Average velocity (m s−1)

r :

Radius (m)

l :

Length of the annulus (m)

Shav :

Sherwood number (dimensionless)

Sc:

Schmidt number (dimensionless)

Re:

Reynolds number (dimensionless)

de :

Hydraulic diameter (m)

ρ :

Density (kg m−3)

\( \overline{\overline{\tau }} \) :

Stress tensor (N m−2)

κ:

Dimensionless ratio (r i /r o )

μ :

Viscosity (kg m−1 s−1)

ф:

Dimensionless factor defined as [(1 − κ)/κ][1/2 − (κ2/(1 − κ2))ln(1/κ)]/[((1 + κ2)/(1 − κ2))ln(1/κ) − 1]

References

  1. Bereta A, Piovesan L, Forzatti P (1999) An investigation on the role of a Pt/Al2O3 catalyst in the oxidative dehydrogenation of propane in annular reactor. J Catal 184:455–468

    Article  Google Scholar 

  2. Papadias D, Würtenberg U, Edsberg L, Björnbom P (2002) Design and characterization of a close—concentric annular reactor for kinetic studies at high temperatures. Chem Eng Sci 57:749–762

    Article  Google Scholar 

  3. Bruno T, Bereta A, Groppi G, Roderi M, Forzatti P (2005) A study of methane partial oxidation in annular reactor: activity of Rh/α–Al2O3 and Rh/ZrO2. Catal Today 99:89–98

    Article  Google Scholar 

  4. Shu HY, Hsieh WP (2006) Treatment of dye manufacturing plant effluent using an annular UV/H2O2 reactor with multi-UV lamps. Sep Purif Technol 51:379–386

    Article  Google Scholar 

  5. Bouzaza A, Vallet C, Laplanche A (2006) Photocatalytic degradation of some VOCs in the gas phase using an annular flow reactor determination of the contribution of mass transfer and chemical reaction steps in the photodegeneration process. J Photochem Photobiol A Chem 177:212–217

    Article  Google Scholar 

  6. Maestri M, Beretta A, Faravelli T, Groppi G, Tronconi T (2007) Role of gas-phase chemistry in the rich combustion of H2 and CO over a Rh/Al2O3 catalyst in annular reactor. Chem Eng Sci 62:4992–4997

    Article  Google Scholar 

  7. Imoberdorf GE, Cassano AE, Irazoqui HA, Alfano OM (2007) Simulation of a multi-annular photocatalytic reactor for degradation of perchloroethylene in air: parametric analysis of radiative energy efficiencies. Chem Eng Sci 64:1138–1154

    Google Scholar 

  8. Mo J, Zhang Y, Yang R, Xu Q (2008) Influence of fins on formaldehyde removal in annular photocatalytic reactors. Build Environ 43:238–245

    Article  Google Scholar 

  9. Vincent G, Marquaire PM, Zahraa O (2009) Photocatalytic degradation of gaseous 1-propanol using an annular reactor: kinetic modeling and pathways. J Hazard Mater 161:1173–1181

    Article  Google Scholar 

  10. Vianna AS Jr, Nichele J (2010) Modeling an annular flow tubular reactor. Chem Eng Sci 65:4261–4270

    Article  Google Scholar 

  11. Zhang J, Burklé-Vitzthum V, Marquaire PM, Wild G, Commenge JM (2011) Direct conversion of methane in formaldehyde at very short residence time. Chem Eng Sci 66:6331–6340

    Article  Google Scholar 

  12. Ross T, Wragg A (1965) Electrochemical mass transfer studies in annuli. Electrochim Acta 10:1093–1106

    Article  Google Scholar 

  13. Ould-Rouis M, Salem A, Legrand J, Nouar C (1995) Etude numérique et expérimentale des transferts de matière et de quantité de mouvement dans un écoulement annulaire laminaire non établi. Int J Heat Mass Transf 38(6):953–967

    Article  Google Scholar 

  14. Mobarak AA, Farag HA, Sedahmed GH (1997) Mass transfer in smooth and rough annular ducts under developing flow conditions. J Appl Electrochem 27:201–207

    Article  Google Scholar 

  15. Duran JE, Taghipour F, Mohseni M (2009) CFD modeling of mass transfer in annular reactors. Int J Heat Mass Transf 52:5390–5401

    Article  MATH  Google Scholar 

  16. Versteeg H, Malalasekra W (2008) An introduction to computational fluid dynamics, 2nd edn. Pearson, London

    Google Scholar 

  17. Pareek VK, Cox SJ, Brungs MP, Young B, Adesina AA (2003) Computational fluid dynamic (CFD) simulation of a pilot scale annular bubble column photocatalytic reactor. Chem Eng Sci 58:859–865

    Article  Google Scholar 

  18. Taghipour F, Mohseni M (2005) CFD simulation of UV photocatalytic reactors for air treatment. AlChE J 51(11):3039–3047

    Article  Google Scholar 

  19. Mohseni M, Taghipour F (2004) Experimental and CFD analysis of photocatalytic gas phase vinyl chloride (VC) oxidation. Chem Eng Sci 59:1601–1609

    Article  Google Scholar 

  20. Sozzi DA, Taghipour F (2006) Computational and experimental study of annular photo-reactor hydrodynamics. Int J Heat Fluid Flow 27:1043–1053

    Article  Google Scholar 

  21. Santoro D, Raisee M, Moghaddami M, Ducoste J, Sasges M, Liberti L, Notarnicola M (2010) Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV–H2O2 photoreactors using computational fluid dynamics. Environ Sci Technol 44:6233–6241

    Article  Google Scholar 

  22. Queffeulou A, Geron L, Archambeau C, Le Gall H, Marquaire PM, Zahraa O (2010) Kinetic study of acetaldehyde photocatalytic oxidation with a thin film of TiO2 coated on stainless steel and CFD modeling approach. J Am Chem Soc 49:6890–6897

    Google Scholar 

  23. Vincent G, Schaer E, Marquaire PM, Zahraa O (2011) CFD modeling of an annular reactor, application to the photocatalytic degradation of acetone. Process Saf Environ 89:35–40

    Article  Google Scholar 

  24. Wilhelm P, Stephan D (2007) Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. J Photochem Photobiol A Chem 185:19–25

    Article  Google Scholar 

  25. Fluent-Inc. (2006) Fluent 6.3 user’s guide. Lebanon

  26. Jarandehehei A, Visscher AD (2009) Three-dimensional CFD model for flat plate photocatalytic reactor: degradation of TCE in a serpentine flow field. AIChE J 55(2):312–320

    Article  Google Scholar 

  27. Bird R, Stewart W, Lightfoot E (2002) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  28. Rani SA, Pitts B, Stewart PS (2005) Rapid diffusion of fluorescent tracers into staphylococcus epidermidis biofilims visualized by time lapse microcopy. J Antimicrob Chemother 49(2):728–732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatinder Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, J., Bansal, A. CFD modeling of hydrodynamics and mass transfer of Rhodamine B in annular reactor. Heat Mass Transfer 48, 2069–2077 (2012). https://doi.org/10.1007/s00231-012-1052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1052-4

Keywords

Navigation