Skip to main content
Log in

Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The effects of surface waviness (λ = 0, 0.125, 0.25, 0.5) and nanoparticle dispersion (ϕ = 0, 0.05, 0.1) on solidification of Cu-water nanofluid inside a vertical enclosure are investigated numerically for different Grashof number (Gr = 105, 106, 107). An enthalpy porosity technique is used to trace the solid and liquid interface. Comparisons with previously published works show the accuracy of the obtained results. A maximum of 25.9% relative variation of freezing time with surface waviness was observed for λ = 0.5, while the relative variation of freezing time with nanoparticles in comparison with surface waviness was negative for high values of λ. It was observed that surface waviness can be used to control the solidification time based on enhancing different mechanism of solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A:

Momentum source term function

C :

Constant

C p :

Specific heat

d p :

Nanoparticle diameter

f :

Liquid fraction

g :

Gravitational acceleration

Gr :

Grashof number, ρ2 gβΔTH 32

h :

Enthalpy

H :

Height of the enclosure

k :

Thermal conductivity

L :

Latent heat of fusion

L.F.:

Liquid fraction

M :

Morphology constant

n :

Direction normal to the surface

Nu :

Nusselt number

p :

Pressure

Pr :

Prandtl number, μ2 C p /k

s :

Distance along wavy wall

S :

Source term

Ste :

Stefan number, ΔTC p /L

t :

Time

T :

Temperature

u :

Velocity component along x-axes

v :

Velocity component along y-axes

x, y :

Cartesian coordinates

β:

Volumetric expansion coefficient

ε:

Constant

ρ:

Density

ϕ :

Volume fraction of solid particles

μ:

Dynamic viscosity

η:

The relative variation of freezing time

τ:

Non dimensional time

λ:

Surface waviness

ave :

Average

nf :

Nanofluid

0:

Stagnant

f :

Base fluid

s :

Solid

ref :

Reference

x :

Along x-axes

y :

Along y-axes

h :

Enthalpy

d :

Thermal dispersion

l :

Liquid

eff :

Effective

cr :

Critical

w :

Wall

References

  1. Duan Q, Tan FL, Leong KC (2002) A numerical study of solidification of n-hexadecane based on the enthalpy formulation. J Mater Process Technol 120:249–258

    Article  Google Scholar 

  2. Semma E, El Ganaoui M, Bennacer R, Mohamad AA (2008) Investigation of flows in solidification by using the lattice Boltzmann method. Int J Therm Sci 47:201–208

    Article  Google Scholar 

  3. Wang S, Faghri A, Bergman TL (2010) A comprehensive numerical model for melting with natural convection. Int J Heat Mass Transf 53:1986–2000

    Article  MATH  Google Scholar 

  4. Zalba B, Marin J, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change materials, heat transfer and analysis and applications. Appl Therm Eng 23:251–283

    Article  Google Scholar 

  5. Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Renew Sustain Energy Rev 11:1913–1965

    Article  Google Scholar 

  6. Jegadheeswaran S, Pohekar SD (2009) Performance enhancement in latent heat thermal storage system: a review. Renew Sustain Energy Rev 13:2225–2244

    Article  Google Scholar 

  7. Dutil Y, Rousse DR, Salah NB, Lassue S, Zalewski L (2011) A review on phase-change materials: mathematical modeling and simulations. Renew Sustain Energy Rev 15:112–130

    Article  Google Scholar 

  8. Godson L, Raja B, Lal DM, Wongwises S (2010) Enhancement of heat transfer using nanofluids—An overview. Renew Sustain Energy Rev 14:629–641

    Article  Google Scholar 

  9. Khodadadi JM, Hosseinizadeh SF (2007) Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int J Commun Heat Mass Transf 34:534–543

    Article  Google Scholar 

  10. Ranjbar AA, Kashani S, Hosseinizadeh SF, Ghanbarpour M (2011) Numerical heat transfer studies of a latent heat storage system containing nano-enhanced phase change material. Therm Sci 15:169–181

    Article  Google Scholar 

  11. Khodadadi JM, Fan L (2009) Expedited freezing of nanoparticle-enhanced phase change materials (NEPCM) exhibited through a simple 1-D stefan problem formulation. ASME Heat Transfer Conf Proceed 1:345–351

    Google Scholar 

  12. Wu S, Zhu D, Li X, Li H, Lei J (2009) Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim Acta 483:73–77

    Article  Google Scholar 

  13. Zhu DS, Wu SY, Yang S (2011) Numerical simulation on thermal energy storage behavior of SiC-H2O nanofluids. Energy Sources A Recovery Utilizat Environment Effect 33:1317–1325

    Article  Google Scholar 

  14. Mahmud S, Das PK, Hyder N, Sadrul Islam AKM (2002) Free convection in an enclosure with vertical wavy walls. Int J Therm Sci 41:440–446

    Article  Google Scholar 

  15. Das PK, Mahmud S (2003) Numerical investigation of natural convection inside a wavy enclosure. Int J Therm Sci 42:397–406

    Article  Google Scholar 

  16. Rostami J (2008) Unsteady natural convection in an enclosure with vertical wavy walls. Heat Mass Transf 44:1079–1087

    Article  Google Scholar 

  17. Giangi M, Stella F, Kowalewski TA (1999) Phase change problems with free convection: fixed grid numerical simulation. Comput Vis Sci 2:123–130

    Article  MATH  Google Scholar 

  18. Joulin A, Younsi Z, Zalewski L, Lassue S, Rousse DR, Cavrot JP (2011) Experimental and numerical investigation of a phase change material: thermal-energy storage and release. Appl Energy 88:2454–2462

    Article  Google Scholar 

  19. Liu YD (2005) Study on preparation and thermal properties of phase change nanocomposites for cool storage. Doctoral dissertation, Chongqing University, Chongqing, China

  20. Li XF (2008) Basic research on enhanced heat transfer characteristics and cold storage application of nanofluids. Doctoral dissertation, South China University of Technology, Guangzhou, China

  21. Liu YD, Zhou YG, Tong MW, Zhou XS (2009) Experimental study of thermal conductivity and phase change performance of nanofluids PCMs. Microfluid Nanofluid 7:579–584

    Article  Google Scholar 

  22. Brent AD, Voller VR, Reid KJ (1988) Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf A 13:297–318

    Google Scholar 

  23. Gong ZX, Devahastin S, Mujumdar AS (1999) Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall. Appl Therm Eng 19:1237–1251

    Article  Google Scholar 

  24. Bertrand O, Binet B, Combeau H, Couturier S, Delannoy Y, Gobin D, Lacroix M, Quere PL, Medale M, Mencinger J, Sadat H, Vieira G (1999) Melting driven by natural convection: a comparison exercise: first results. Int J Therm Sci 38:5–26

    Article  Google Scholar 

  25. Brinkman HC (1952) The viscosity of concentrated suspensions and solution. J Chem Phys 20:571–581

    Article  Google Scholar 

  26. Maxwell J (1904) A treatise on electricity and magnetism. Clarendon Press, Oxford

    Google Scholar 

  27. Wakao N, Kaguei S (1982) Heat and mass transfer in packed beds. Gordon and Breach Science Publishers, New York, pp 175–205

    Google Scholar 

  28. Khodadadi JM, Zhang Y (2001) Effects of buoyancy-driven convection on melting within spherical containers. Int J Heat Mass Transf 44:1605–1618

    Article  MATH  Google Scholar 

  29. Ferziger JH, Peric M (2002) Computational methods for fluid dynamics. Springer, New York

    Book  MATH  Google Scholar 

  30. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Washington

    MATH  Google Scholar 

  31. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdollahzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashani, S., Ranjbar, A.A., Abdollahzadeh, M. et al. Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity. Heat Mass Transfer 48, 1155–1166 (2012). https://doi.org/10.1007/s00231-012-0965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-0965-2

Keywords

Navigation