Skip to main content
Log in

Assessment of an unstructured exponential scheme discrete ordinates radiation model for non-gray media

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

For radiative transfer in complex geometries, Sakami and his co-workers have developed a discrete ordinates method (DOM) exponential scheme for unstructured meshes which was mainly applied to gray media. The present study investigates the application of the unstructured exponential scheme to a wider range of non-gray scenarios found in fire and combustion applications, with the goal to implement it in an in-house Computational Fluid Dynamics (CFD) code for fire simulations. The original unstructured gray exponential scheme is adapted to non-gray applications by employing a statistical narrow-band/correlated-k (SNB-CK) gas model and meshes generated using the authors’ own mesh generator. Different non-gray scenarios involving spectral gas absorption by H2O and CO2 are investigated and a comparative analysis is carried out between heat flux and radiative source terms predicted and literature data based on ray-tracing and Monte Carlo methods. The maximum discrepancies for total radiative heat flux do not typically exceed 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

C :

Gas concentration

f(k):

k-distribution function in correlated-k (CK) gas model

g j :

jth quadrature point in CK gas model

g(k):

Cumulative distribution function in CK gas model

I :

Radiation intensity (W m−2 sr−1)

\( I_{km}^{i} \) :

Mean lateral intensity of side k bounding cell i for direction Ωm (W m−2 sr−1)

\( I_{m}^{i} \) :

Mean lateral intensity of cell i for direction Ωm (W m−2 sr−1)

k :

Absorption coefficient (m−1)

L :

Thickness of the medium (m)

\( l_{k}^{i} \) :

Length of side k bounding cell i (m)

M:

Number of discrete directions Ωm

m :

Relative to a discrete direction Ωm

n :

Unit normal vector of a surface

q :

Radiative heat flux (W m−2)

\( S_{k}^{i} \) :

Area of the side k bounding cell i (m2)

s :

Distance on the path of a ray, si and sf for the beginning and end of the path, or coordinate along direction Ω (m)

T :

Temperature (K)

t :

s i  − s f (m)

w :

Weight

X:

Molar fraction

x :

Coordinate (m)

y :

Coordinate (m)

z :

Coordinate (m)

α, γ:

Angle relative to an elementary cell, defined by Fig. 1 (rad)

β :

Extinction coefficient (m−1)

∆ν:

Wavenumber range (cm−1)

ε :

Wall emissivity

μ, ξ, η :

Direction cosines

v :

Wavenumber (cm−1)

ρ :

Medium density (kg m−3)

σ :

Scattering coefficient (m−1)

τ :

Optical thickness

Φ:

Scattering phase function

\( \varphi_{km}^{i} \) :

\( \Upomega_{m} \cdot n_{k}^{i} \)

Ψ:

Element surface (m2)

Ω:

Solid angle (sr)

ω:

Scattering albedo

b :

Black body

g :

Gas or medium

i :

Cell i

inco :

Incoming

k :

Related to side k of cell

leav :

Leaving

m :

Outgoing ordinate direction

m’:

Incoming ordinate direction

s :

Surface

x :

Coordinate direction

y :

Coordinate direction

z :

Coordinate direction

λ :

Spectral

’:

Incoming direction

i :

Relative to cell i

References

  1. Novozhilov V (2001) Computational fluid dynamics modeling of compartment fires. Prog Energy Comb Sci 27:611–666

    Article  Google Scholar 

  2. Howell JR (1968) Application of Monte Carlo to heat transfer problems. In: Hartnett JP, Irvine T (eds) Advances in heat transfer, vol 5. Academic Press, New York

    Google Scholar 

  3. Lockwood FC, Shah NG (1981) A new radiation solution method for incorporation in general combustion prediction procedures. In: 18th Symposium (Int.) on combustion. The Combustion Institute, Pittsburgh. pp 1405–1414

  4. Chandrasekhar S (1960) Radiative heat transfer. Dover Publications, New York

    Google Scholar 

  5. Carlson BG, Lathrop KD (1968) Transport theory—the method of discrete-ordinates. In: Greenspan H, Kelber CN, Okrent D (eds) Computing methods in reactor physics. Gordon and Breach, New York

    Google Scholar 

  6. Lee HS, Chai JC, Patankar SV (1998) Recent developments in the solution of radiation heat transfer using the discrete ordinates method. Int J Fluid Mech Res 25:556–565

    Google Scholar 

  7. Coelho PJ (2002) The role of ray effects and false scattering on the accuracy of the standard and modified discrete ordinates methods. J Quant Spectrosc Radiat Transf 73:231–238

    Article  Google Scholar 

  8. Koch R, Krebs W, Wittig S, Viskanta R (1995) A parabolic formulation of the discrete ordinates method for the treatment of complex geometries. In: Menguc P (ed) Radiative Transfer—I first international symposium on radiative heat transfer. Begell House, New York, pp 43–61

    Google Scholar 

  9. Cha H, Song TH (2000) Discrete ordinates interpolation method applied to irregular three-dimensional geometries. ASME J Heat Transf 122:823–827

    Article  Google Scholar 

  10. Koo HM, Vaillon R, Goutière V, Le Dez V, Cha H, Song TH (2003) Comparison of three discrete ordinates methods applied to two-dimensional curved geometries. Int J Thermal Sci 42:343–359

    Article  Google Scholar 

  11. Capdevila R, Perez-Segarra CD, Oliva A (2010) Development and comparison of different spatial numerical schemes for the radiative transfer equation resolution using three-dimensional unstructured meshes. J Quant Spectrosc Radiat Transf 111:264–273

    Article  Google Scholar 

  12. Grissa H, Askri F, Ben Salah M, Ben Nasrallah S (2010) Prediction of radiative heat transfer in 3D complex geometries using the unstructured control volume finite element method. J Quant Spectrosc Radiat Transf 111:144–154

    Article  Google Scholar 

  13. Sakami M, Charette A (1998) A new differencing scheme for the discrete ordinates method in complex geometries. Rev Gén Thermique 37:440–449

    Article  Google Scholar 

  14. Sakami M, Charette A, Le Dez V (1996) Application de la methode des ordonnees discrete aux transferts radiatifs dans un milieu bidimensionnel gris a geometrie complexe. Rev Gén Thermique 35:83–94

    Article  Google Scholar 

  15. Sakami M, Charette A, Le Dez V (1996) Application of the discrete ordinates method to combined conductive and radiative heat transfer in a two-dimensional complex geometry. J Quant Spectrosc Radiat Transf 56:517–533

    Article  Google Scholar 

  16. Sakami M, Charette A, Le Dez V (1998) Radiative heat transfer in 3-dimensional enclosures of complex geometry by using the discrete ordinates method. J Quant Spectrosc Radiat Transf 59:117–136

    Article  Google Scholar 

  17. Joseph D, El Hafi M, Fournier R, Cuenot B (2005) Comparison of three spatial differencing schemes in discrete ordinates method using three-dimensional unstructured meshes. Int J Therm Sci 44:851–864

    Article  Google Scholar 

  18. Chai JC, Parthasarathy G, Lee HS, Patankar SV (1995) Finite volume radiative heat transfer procedure for irregular geometries. J Thermophys Heat Transf 9(3):410–415

    Article  Google Scholar 

  19. Ströhle J, Schnell U, Hein KRG (2001) A mean flux discrete ordinates interpolation scheme for general coordinates. In: 3rd international conference on heat transfer, Antalya

  20. Goody RM, Yung YL (1989) Atmospheric radiation. Oxford University Press, New York

    Google Scholar 

  21. Lacis AA, Oinas VA (1991) A description of the correlated k distribution method for modelling non gray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J Geophys Res 96:9027–9063

    Article  Google Scholar 

  22. Dembele S, Wen J (2003) Evaluation of a fast correlated-k approach for radiation calculation in combustion systems. Num Heat Transf Part B Fundam 44:365–385

    Article  Google Scholar 

  23. Soufiani A, Taine J (1997) High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2, CO, and correlated-k model for H2O and CO2. Int J Heat Mass Transf 40:987–991

    Article  Google Scholar 

  24. Liu F, Smallwood GS, Gulder OL (2001) Application of the statistical narrow-band correlated-k method to non-grey gas radiation in CO2–H2O mixtures: approximate treatments of overlapping bands. J Quant Spectrosc Radiat Transf 68:401–417

    Article  Google Scholar 

  25. Bern M, Plassmann P (1999) Mesh generation. In: Sack JR, Urrutia J (eds) Handbook of computational geometry. Elsevier Science, New York

    Google Scholar 

  26. Henrique de Figueiredo L, de Miranda Gomes J, Terzopoulos D, Velho L (1992) Physically-based methods for polygonization of implicit surfaces. In: Proceedings of the conference on graphics interface’92. Morgan Kaufmann Publishers Inc. pp 250–257

  27. Desbrun M, Tsingos N, Gascuel MP (1996) Adaptive sampling of implicit surfaces for interactive modelling and animation. Comput Graph Forum 15:319–325

    Google Scholar 

  28. Field DA (1988) Laplacian smoothing and Delaunay triangulations. Commun Appl Num Method 4:709–712

    Article  MATH  Google Scholar 

  29. Bossen FJ, Heckbert PS (1996) A pliant method for anisotropic mesh generation. In: Proceedings of the 5th international meshing roundtable, Sandia Nat. Lab. pp 63–76

  30. Goutiere V, Liu F, Charette A (2000) An assessment of real-gas modeling in 2D enclosures. J Quant Spectrosc Transf 64:299–326

    Article  Google Scholar 

  31. Thurgood CP (1992) A critical evaluation of the discrete ordinates method using HEART and Tn quadrature. Ph.D. thesis, Queen’s University, Kingston, Canada

  32. Liu J, Tiwari SN (1993) Investigation of the two-dimensional radiation using a narrow band model and Monte Carlo method. In: Radiation heat transfer theory and applications, ASME HTD, vol 244. pp 21–31

  33. Hubbard GL, Tien CL (1978) Infrared mean absorption coefficients of luminous flames and smoke. J Heat Transf 100:235–239

    Article  Google Scholar 

  34. Hartmann JM, Levi Di Leon R, Taine J (1984) Line-by-line and narrow-band statistical model calculations for H2O. J Quant Spectrosc Radiat Transf 32:119–127

    Article  Google Scholar 

  35. Raithby GD, Chui EH (1990) A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. J Heat Transf 112:415–423

    Article  Google Scholar 

  36. El Wakil N, Sacadura JF (1992) Some improvements of the discrete ordinates method for the solution of the radiative transport equation in multidimensional anisotropically scattering media. In: Thynell ST et al (ed) Developments in radiative heat transfer, ASME HTD, vol 203. pp 119–127

  37. Dua SS, Cheng P (1975) Multi-dimensional radiative transfer in non-isothermal cylindrical media with non-isothermal bounding walls. Int J Heat Mass Transf 18:245–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dembele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dembele, S., Lima, K.L.M. & Wen, J.X. Assessment of an unstructured exponential scheme discrete ordinates radiation model for non-gray media. Heat Mass Transfer 47, 1349–1362 (2011). https://doi.org/10.1007/s00231-011-0805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0805-9

Keywords

Navigation